Skip to main content
Log in

Solutions of the generalized half-plane and half-space Cerruti problems with surface effects

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The generalized half-plane and half-space Cerruti problems with surface effects are analytically solved using Gurtin and Murdoch’s surface elasticity theory along with the Airy stress function method and the Papkovitch–Neuber potential function approach, respectively. The Fourier transform method is employed in the formulation. The newly derived solutions reduce to their classical elasticity-based counterparts if the surface effects are not considered. In addition, the current solution for the half-space Cerruti problem recovers that based on a simplified version of the surface elasticity theory as a special case. Further, specific solutions are obtained for the cases with loading by a concentrated tangential force and by a uniform traction acting over a circular region. The numerical results reveal that the predictions by the current solutions substantially deviate from those by their classical counterparts near the loading site, but the differences between the two sets of predictions diminish far away from the loading site. Moreover, the newly obtained solutions do not exhibit stress or displacement singularity at the loading point/boundary and predict smoother stress fields and smaller displacements than the classical solutions that do not incorporate the surface effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach H., Eremeyev V.A., Lebedev L.P.: On the existence of solution in the linear elasticity with surface stresses. Z. Angew. Math. Mech. 90, 231–240 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anagnostou, D. S., Gourgiotis, P. A., Georgiadis, H. G.: The Cerruti problem in dipolar gradient elasticity. Math. Mech. Solids 65, 393–404 (2014)

    Google Scholar 

  3. Barbot S., Fialko Y.: Fourier-domain Green’s function for an elastic semi-infinite solid under gravity, with applications to earthquake and volcano deformation. Geophys. J. Int. 182, 568–582 (2010)

    Article  Google Scholar 

  4. Cammarata R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  5. Cerruti V.: Ricerche intorno all’ equilibrio de’corpi elastici isotropi. R. Accad. Lincei Mem. Cl. Sci. Fis. Mat. e Nat. 3(13), 81–122 (1882)

    Google Scholar 

  6. Chhapadia P., Mohammadi P., Sharma P.: Curvature-dependent surface energy and implications for nanostructures. J. Mech. Phys. Solids 59, 2103–2115 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dyszlewicz J.: Micropolar Theory of Elasticity. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  8. Gao X.-L., Ma H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–797 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao, X.-L., Mahmoud, F.F.: A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects. Z. Angew. Math. Phys. 65, 393–404 (2014)

    Google Scholar 

  10. Gao X.-L., Park S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  11. Gao X.-L., Zhou S.-S.: Strain gradient solutions of half-space and half-plane contact problems. Z. Angew. Math. Phys. 64, 1363–1386 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Georgiadis H.G., Vardoulakis I., Velgaki E.G.: Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J. Elast. 74, 17–45 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Boston (2007)

  14. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gurtin M.E., Murdoch A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  16. He L.H., Lim C.W.: Surface Green function for a soft elastic half-space: influence of surface stress. Int. J. Solids Struct. 43, 132–143 (2006)

    Article  MATH  Google Scholar 

  17. Lazar M., Maugin G.A., Aifantis E.C.: On dislocations in a special class of generalized elasticity. Phys. Stat. Sol. (b) 242, 2365–2390 (2005)

    Article  Google Scholar 

  18. Ling F.F., Lai W.M., Lucca D.A.: Fundamentals of Surface Mechanics with Applications. Springer, New York (2002)

    Book  MATH  Google Scholar 

  19. Little R.W.: Elasticity. Prentice-Hall, Englewood Cliffs, NJ (1973)

    MATH  Google Scholar 

  20. Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th ed. Cambridge University Press, Cambridge, UK (1927)

    Google Scholar 

  21. Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985)

    Book  MATH  Google Scholar 

  22. Maugin G.A.: A historical perspective of generalized continuum mechanics. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 3–19. Springer, Berlin (2011)

    Chapter  Google Scholar 

  23. Maugis D.: Contact, Adhesion, and Rupture of Elastic Solids. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  24. Miller R.E., Shenoy V.B.: Size dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  25. Mindlin, R. D.: Force at a point in the interior of a semi-infinite solid. In: Proceedings of the First Midwestern Conference on Solid Mechanics, pp. 56–59 (1953)

  26. Nowinski J.L.: On the three-dimensional Cerruti problem for an elastic nonlocal half-space. Z. Angew. Math. Mech. 72, 243–249 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Okumura I.A.: On the generalization of Cerruti’s problem in an elastic half-space. Struct. Eng. Earthq. Eng. 12(2), 17s–26s (1995)

    MathSciNet  Google Scholar 

  28. Podio-Guidugli P., Favata A.: Elasticity for Geotechnicians. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  29. Pozharskii D.A.: Generalization of the Cerruti problem. Dokl. Phys. 53(5), 283–286 (2008)

    Article  Google Scholar 

  30. Ru C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. Mech. Astron. 53, 536–544 (2010)

    Article  MathSciNet  Google Scholar 

  31. Sadd M.H.: Elasticity: Theory, Applications, and Numerics, 2nd ed. Academic Press, Burlington, MA (2009)

    Google Scholar 

  32. Selvadurai A.P.S.: Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poisson Equation. Springer, Berlin (2000)

    Book  Google Scholar 

  33. Steigmann D.J., Ogden R.W.: Plane deformation of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453, 853–877 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Steigmann D.J., Ogden R.W.: Elastic surface–substrate interactions. Proc. R. Soc. A 455, 437–474 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  35. Yang F.Q.: Effect of interfacial stresses on the elastic behavior of nanocomposite materials. J. Appl. Phys. 99, 054306-1–054306-5 (2006)

    Google Scholar 

  36. Zhou S.-S., Gao X.-L.: Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145–166 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-L. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, SS., Gao, XL. Solutions of the generalized half-plane and half-space Cerruti problems with surface effects. Z. Angew. Math. Phys. 66, 1125–1142 (2015). https://doi.org/10.1007/s00033-014-0419-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0419-4

Mathematics Subject Classification

Keywords

Navigation