Skip to main content
Log in

Existence and energy decay of solutions for the Euler–Bernoulli viscoelastic equation with a delay

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider initial-boundary value problem of Euler–Bernoulli viscoelastic equation with a delay term in the internal feedbacks. Namely, we study the following equation

$$u_{tt}(x,t)+ \Delta^2 u(x,t)-\int\limits_0^t g(t-s)\Delta^2 u(x,s){\rm d}s+\mu_1u_t(x,t)+\mu_2 u_t(x,t-\tau)=0 $$

together with some suitable initial data and boundary conditions in \({\Omega\times (0,+\infty)}\) . For arbitrary real numbers μ 1 and μ 2, we prove that the above-mentioned model has a unique global solution under suitable assumptions on the relaxation function g. Moreover, under some restrictions on μ 1 and μ 2, exponential decay results of the energy for the concerned problem are obtained via an appropriate Lyapunov function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christensen R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, New York (1977)

    Google Scholar 

  2. Boltzmann L.: Zur Theorie der Elastischen Nachwirkung. Sitzungsber. Math. Naturwiss. KL. Kaiserl. Acad. Wiss. 70(2), 175 (1874)

    Google Scholar 

  3. Fabrizio M., Polidoro S.: Asymptotic decay for some differential systems with fading memory. Appl. Anal. 81, 1245–1264 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Horn M.A.: Uniform decay rates for the solutions to the Euler–Bernoulli plate equation with boundary feedback acting via bending moments. Differ. Integral Equ. 5, 1121–1150 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Ji G., Lasiecka I.: Nonlinear boundary feedback stabilization for a semilinear Kirchhoff plate with dissipation acting only via moments-limiting behavior. J. Math. Anal. Appl. 229, 452–479 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lagnese J.E., Leugering G.: Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differ. Equ. 91, 355–388 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lange H., Perla Menzala G.: Rates of decay of a nonlocal beam equation. Differ. Integral Equ. 10(6), 1075–1092 (1997)

    MATH  MathSciNet  Google Scholar 

  8. Lasiecka I.: Exponential decay rates for the solutions of the Euler–Bernoulli equations with boundary dissipation occuring in the moments only. J. Differ. Equ. 95, 169–182 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lasiecka I., Triggiani R.: Exact controllability of the Euler–Bernoulli equation with boundary controls for dislacement and moment. J. Math. Anal. Appl. 146, 1–33 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guesmia A.: Existence globale et stabilisation interne nonlinéaire d’un système de Petrovsky. Bull. Belg. Math. Soc. Simon Stevin 5(4), 583–594 (1998)

    MATH  MathSciNet  Google Scholar 

  11. Messaoudi S.A.: Global existence and nonexistence in a system of Petrovsky. J. Math. Anal. Appl. 265(2), 296–308 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lagnese J.E.: Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping. Int. Ser. Numer. Math. 91, 211–236 (1989)

    MathSciNet  Google Scholar 

  13. Munoz Rivera J., Lapa E.C., Barreto R.: Decay rates for viscoelastic plates with memory. J. Elast. 44(1), 61–87 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cavalcanti M.M.: Existence and uniform decay for Euler–Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discret. Contin. Dyn. Syst. 8(3), 675–695 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cavalcanti M.M., Cavalcanti V.N., Ma T.F.: Exponential decay of the viscoelastic Euler–Bernoulli equation with a nonlocal dissipation in general domains. Differ. Integral Equ. 17(5–6), 495–510 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Park J.Y., Kim J.A.: Existence and uniform decay for Euler–Bernoulli beam equation with memory term. Math. Method Appl. Sci. 27, 1629–1640 (2004)

    Article  MATH  Google Scholar 

  17. Ha T.G., Park J.Y.: Stabilization of the viscoelastic Euler–Bernoulli type equation with a local nonlinear dissipation. Dyn. PDE 6(4), 335–366 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Park J.Y., Kang J.R.: Energy decay estimates for the Bernoulli–Euler-type equation with a local degenerate dissipation. Appl. Math. Lett. 23(10), 1274–1279 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cavalcanti M.M., Domingos Cavalcanti V.N., Prates Filho J.S., Soriano J.A.: Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ. Integral Equ. 14(1), 85–116 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Chaáo R.C., Bisognin E., Bisignin V., Pazoto A.F.: Asymptotic behavior of a Bernoulli- Euler type equation with nonlinear localized damping. Progr. Nonlinear Differ. Equ. Appl. 66, 67–91 (2006)

    Google Scholar 

  21. Dafermos C.M.: Energy methods for non linear hyperbolic Volterra integro–differential equation. Comm. P. D. E. 3, 119–178 (1979)

    Google Scholar 

  22. Kim J.U.: A unique continuation property of a beam equation with variable coefficients, in estimation and control of distributed parameter systems. Int. Ser. Numer. Math. 100, 197–205 (1991)

    Article  Google Scholar 

  23. Kim J.U.: Exact controllability of an Euler–Bernoulli equation. SIAM J. Control Optim. 30, 1001–1023 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nicaise S., Pignotti C.: Stability and instability results of the wave equations with a delay term in the boundary or internal feedbacks. SIAM J.Control Optim. 45, 1561–1585 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kirane M., Said-Houari B.: Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62, 1065–1082 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dai, Q., Yang, Z.: Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. (2013). doi:10.1007/s00033-013-0365-6

  27. Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation. Differ. Integral Equ. 6, 507–533 (1993)

    MATH  MathSciNet  Google Scholar 

  28. Lasiecka I., Messaoudi S.A., Mustafa M.I.: Note on intrinsic decay rates for wave equations with memory. J. Math. Phys. 54, 031504 (2013)

    Article  MathSciNet  Google Scholar 

  29. Messaoudi S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341, 1457–1467 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mustafa M.I., Messaoudi S.A.: General stability result for viscoelastic wave equation. J. Math. Phys. 53, 053702 (2012)

    Article  MathSciNet  Google Scholar 

  31. Adams R. A., Fournier John J.F.: Sobolev Spaces, 2nd edition. Elsevier, Singapore (2009)

    Google Scholar 

  32. Arnold V.I.: Ordinary Differential Equations, 1st ed. Springer, Berlin (1992)

    Google Scholar 

  33. Evans L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  34. Ladyzhenskaya O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Yang.

Additional information

Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 14JJ7070) and the Key Built Disciplines of Hunan Province (No. [2011]76).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z. Existence and energy decay of solutions for the Euler–Bernoulli viscoelastic equation with a delay. Z. Angew. Math. Phys. 66, 727–745 (2015). https://doi.org/10.1007/s00033-014-0429-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0429-2

Mathematics Subject Classification (2010)

Keywords

Navigation