Skip to main content
Log in

A microstructure- and surface energy-dependent third-order shear deformation beam model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A new non-classical third-order shear deformation model is developed for Reddy–Levinson beams using a variational formulation based on Hamilton’s principle. A modified couple stress theory and a surface elasticity theory are employed. The equations of motion and complete boundary conditions for the beam are obtained simultaneously. The new model contains a material length scale parameter to account for the microstructure effect and three surface elastic constants to describe the surface energy effect. Also, Poisson’s effect is incorporated in the new beam model. The current non-classical model recovers the classical elasticity-based third-order shear deformation beam model as a special case when the microstructure, surface energy and Poisson’s effects are all suppressed. In addition, the newly developed beam model includes the models considering the microstructure dependence or the surface energy effect alone as limiting cases and reduces to two existing models for Bernoulli–Euler and Timoshenko beams incorporating the microstructure and surface energy effects. To illustrate the new model, the static bending and free vibration problems of a simply supported beam loaded by a concentrated force are analytically solved by directly applying the general formulas derived. For the static bending problem, the numerical results reveal that both the deflection and rotation of the simply supported beam predicted by the current model are smaller than those predicted by the classical model. Also, it is observed that the differences in the deflection and rotation predicted by the two beam models are very large when the beam thickness is sufficiently small, but they are diminishing with the increase in the beam thickness. For the free vibration problem, it is found that the natural frequency predicted by the new model is higher than that predicted by the classical beam model, and the difference is significant for very thin beams. These predicted trends of the size effect at the micron scale agree with those observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J.-J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenbach H., Eremeev V.A., Morozov N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45, 331–342 (2010)

    Article  Google Scholar 

  3. Cammarata R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  4. Challamel N.: Higher-order shear beam theories and enriched continuum. Mech. Res. Commun. 38, 388–392 (2011)

    Article  MATH  Google Scholar 

  5. Chen J.Y., Huang Y., Ortiz M.: Fracture analysis of cellular materials: a strain gradient model. J. Mech. Phys. Solids 46, 789–828 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chhapadia P., Mohammadi P., Sharma P.: Curvature-dependent surface energy and implications for nanostructures. J. Mech. Phys. Solids 59, 2103–2115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chong A.C.M., Yang F., Lam D.C.C., Tong P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16, 1052–1058 (2001)

    Article  Google Scholar 

  8. Ellis R.W., Smith C.W.: A thin-plate analysis and experimental evaluation of couple-stress effects. Exp. Mech. 7, 372–380 (1967)

    Article  Google Scholar 

  9. Gao X.-L.: An expanding cavity model incorporating strain-hardening and indentation size effects. Int. J. Solids Struct. 43, 6615–6629 (2006)

    Article  MATH  Google Scholar 

  10. Gao, X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. (2014). doi:10.1007/s00707-014-1189-y

  11. Gao X.-L., Huang J.X., Reddy J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao X.-L., Mahmoud F.F.: A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Z. Angew. Math. Phys. 65, 393–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao X.-L., Mall S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    Article  MATH  Google Scholar 

  14. Gao X.-L., Park S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  15. Gao X.-L., Zhou S.-S.: Strain gradient solutions of half-space and half-plane contact problems. Z. angew. Math. Phys. 64, 1363–1386 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gurtin M.E., Murdoch A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  18. He L.H., Lim C.W.: Surface Green function for a soft elastic half-space: influence of surface stress. Int. J. Solids Struct. 43, 132–143 (2006)

    Article  MATH  Google Scholar 

  19. Heyliger P.R., Reddy J.N.: A higher order beam finite element for bending and vibration problems. J. Sound Vib. 126, 309–326 (1988)

    Article  MATH  Google Scholar 

  20. Hutchinson J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang L.Y., Yan Z.: Timoshenko beam model for static bending of nanowires with surface effects. Phys. E 42, 2274–2279 (2010)

    Article  Google Scholar 

  22. Kaneko T.: On Timoshenko’s correction for shear in vibrating beams. J. Phys. D: Appl. Phys. 8, 1927–1936 (1975)

    Article  Google Scholar 

  23. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  24. Lazopoulos K.A., Lazopoulos A.K.: Bending and buckling of thin strain gradient elastic beams. Euro. J. Mech. A/Solids 29, 837–843 (2010)

    Article  Google Scholar 

  25. Levinson M.: A new rectangular beam theory. J. Sound Vib. 74, 81–87 (1981)

    Article  MATH  Google Scholar 

  26. Liu C., Rajapakse R.K.N.D.: Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans. Nanotechnol. 9, 422–431 (2010)

    Article  Google Scholar 

  27. Liu, C., Rajapakse, R.K.N.D., Phani, A.S.: Finite element modeling of beams with surface energy effects. ASME J. Appl. Mech. 78, 031014∼1-10 (2011)

  28. Ma H.M., Gao X.-L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ma H.M., Gao X.-L., Reddy J.N.: A non-classical Reddy–Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. Eng. 8, 167–180 (2010)

    Article  Google Scholar 

  30. Ma H.M., Gao X.-L., Reddy J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  31. Mahmoud F.F., Eltaher M.A., Alshorbagy A.E., Meletis E.I.: Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Technol. 26, 3555–3563 (2012)

    Article  Google Scholar 

  32. Maugin G.A.: A historical perspective of generalized continuum mechanics. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua., pp. 3–19. Springer, Berlin (2011)

    Chapter  Google Scholar 

  33. McFarland A.W., Colton J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  34. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  35. Mindlin R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  36. Papargyri-Beskou S., Beskos D.E.: Static analysis of gradient elastic bars, beams, plates and shells. Open Mech. J. 4, 65–73 (2010)

    Google Scholar 

  37. Papargyri-Beskou S., Tsepoura K.G., Polyzos D., Beskos D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  MATH  Google Scholar 

  38. Park S.K., Gao X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  39. Park S.K., Gao X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. angew. Math. Phys. 59, 904–917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Reddy J.N.: A simple higher-order theory for laminated composite plates. ASME J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  41. Reddy J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd ed. Wiley, New York (2002)

    Google Scholar 

  42. Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  43. Reddy J.N., Wang C.M., Lim G.T., Ng K.H.: Bending solutions of Levinson beams and plates in terms of the classical theories. Int. J. Solids Struct. 38, 4701–4720 (2001)

    Article  MATH  Google Scholar 

  44. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104-1∼11. (2005)

  45. Song F., Huang G.L., Park H.S., Liu X.N.: A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154–2163 (2011)

    Article  Google Scholar 

  46. Steigmann D.J., Ogden R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. A 453, 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Steigmann D.J., Ogden R.W.: Elastic surface-substrate interactions. Proc. R. Soc. Lond. A 455, 437–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Timoshenko S.P., Goodier J.N.: Theory of Elasticity, 3rd edition. McGraw-Hill, New York (1970)

    Google Scholar 

  49. Triantafyllou A., Giannakopoulos A.E.: Structural analysis using a dipolar elastic Timoshenko beam. Euro. J. Mech. A/Solids 39, 218–228 (2013)

    Article  MathSciNet  Google Scholar 

  50. Wang B., Liu M., Zhao J., Zhou S.: A size-dependent Reddy–Levinson beam model based on a strain gradient elasticity theory. Meccanica 49, 1427–1441 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, F.Q.: Effect of interfacial stresses on the elastic behavior of nanocomposite materials. J. Appl. Phys. 99, 054306–1∼5. (2006)

  52. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  53. Zhou S.-S., Gao X.-L.: Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145–166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhou, S.-S., Gao, X.-L.: A non-classical model for circular Mindlin plates based on a modified couple stress theory. ASME J. Appl. Mech. 81, 051014-1∼8 (2014)

  55. Zhou, S.-S., Gao, X.-L.: Solutions of the generalized half-plane and half-space Cerruti problems with surface effects. Z. Angew. Math. Phys. (2014). doi:10.1007/s00033-014-0419-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-L. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XL., Zhang, G.Y. A microstructure- and surface energy-dependent third-order shear deformation beam model. Z. Angew. Math. Phys. 66, 1871–1894 (2015). https://doi.org/10.1007/s00033-014-0455-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0455-0

Mathematics Subject Classification

Keywords

Navigation