Skip to main content
Log in

Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The equilibrium problem of the elastic body with a delaminated thin rigid inclusion is considered. In this case, there is a crack between the rigid inclusion and the elastic body. We suppose that the nonpenetration conditions are prescribed on the crack faces. We study the dependence of the energy of the body on domain variations. The formula for the shape derivative of the energy functional is obtained. Moreover, it is shown that for the special cases of the domain perturbations such derivative can be represented as invariant integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G., Jouve F., Toader A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire G., Jouve F., Van Goethem N.: Damage and crack evolution by shape optimization methods. J. Comput. Phys. 230, 5010–5044 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrieux S., Ben Abda A., Bui Y.: Reciprocity principle and crack identification. Inverse Probl. 15, 59–69 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bigoni D., Dal Corso F., Gei M.: The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part II. Implications on shear band nucleation, growth and energy release rate. J. Mech. Phys. Solids 56, 839–857 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen G., Rahman S., Park Y.H.: Shape sensitivity and realiability analyses of linear-elastic cracked structure. Int. J. Fract. 112, 223–246 (2001)

    Article  Google Scholar 

  6. Chen Y.-H., Lu T.J.: Recent developments and applications of invariant integrals. Appl. Mech. Rev. 56, 515–551 (2003)

    Article  Google Scholar 

  7. Cherepanov G.P.: Mechanics of Brittle Fracture. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  8. Dal Corso F., Bigoni D., Gei M.: The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I. Full-field solution and asymptotics. J. Mech. Phys. Solids 56, 815–838 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delfour M.C., Zolesio J.-P.: Shapes and Geometries. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  10. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  11. Goldstein R., Shifrin E., Shushpannikov P.: Application of invariant integrals to the problems of defect identification. Int. J. Fract. 147, 45–54 (2007)

    Article  MATH  Google Scholar 

  12. Hintermüller M., Laurain A.: A shape and topology optimization technique for solving a class of linear complementarity problems in function space. J. Comput. Optim. Appl. 46, 535–569 (2010)

    Article  MATH  Google Scholar 

  13. Irwin G.R.: Fracture. In: Flugge, S. (ed.) Handbuch der Physik Vol. VI: Elasticity and Plasticity, pp. 551–590. Springer, Berlin (1958)

    Google Scholar 

  14. Itou H., Khludnev A.M., Rudoy E.M., Tani A.: Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity. Z. Angew. Math. Mech. 92, 716–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khludnev A.M.: Problem of a crack on the boundary of a rigid inclusion in an elastic plate. Mech. Solids 45, 733–742 (2010)

    Article  Google Scholar 

  16. Khludnev A.M., Leugering G.: On elastic bodies with thin rigid inclusions and cracks. Math. Meth. Appl. Sci. 33, 1955–1967 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Khludnev A.M., Kovtunenko V.A.: Analysis of Cracks in Solids. WIT-Press, Southampton (2000)

    Google Scholar 

  18. Khludnev A.M., Kovtunenko V.A., Tani A.: Evolution of a crack with kink and non-penetration. J. Math. Soc. Jpn. 60, 1219–1253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khludnev A.M., Negri M.: Optimal rigid inclusion shapes in elastic bodies with cracks. Z. Angew. Math. Phys. 64, 179–191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khludnev A.M., Sokolowski J.: The Griffith formula and the Rice-Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains. Eur. J. Appl. Math. 10, 379–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khludnev A.M., Sokolowski J., Szulc K.: Shape and topological sensitivity analysis in domains with cracks. Appl. Math. 55, 433–469 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kimura M., Wakano I.: Shape derivative of potential energy and energy release rate in fracture mechanics. J. Math Ind. 3, 21–31 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Knees D.: Griffith-formula and J-integral for a crack in a power-law hardening material. Math. Models Methods Appl. Sci. 16, 1723–1749 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Knees D.: Energy release rate for cracks in finite-strain elasticity. Math. Meth. Appl. Sci. 31, 501–528 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koshelev A.I.: A priori estimates in L p and generalized solutions of elliptic equations and systems. Uspekhi Mat. Nauk 13, 29–88 (1958)

    Google Scholar 

  26. Kovtunenko V.A.: Invariant energy integrals for the non-linear crack problem with possible contact of the crack surface. J. Appl. Math. Mech. 67, 99–110 (2003)

    Article  MathSciNet  Google Scholar 

  27. Kovtunenko V.A.: Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration. IMA J. Appl. Math. 71, 635–657 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kovtunenko V.A.: Primal-dual sensitivity analysis of active sets for mixed boundary-value contact problems. J. Eng. Math. 55, 151–166 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lazarev, N.P., Rudoy, E.M.: Shape sensitivity analysis of Timoshenko’s plate with a crack under the nonpenetration condition. Z. Angew. Math. Mech. 94, 730–739 (2014)

  30. Lions J.-L., Magenes E.: Problémes aux limites non homogénes et applications, vol. 1. Dunod, Paris (1968)

    MATH  Google Scholar 

  31. Maz’ya V.G., Poborchi S.V.: Differentiable Functions on Bad Domains. World Scientific Pub Co Inc, Singapore (1997)

    MATH  Google Scholar 

  32. Mikhailov, V.P.: Partial Differential Equations. Nauka, Moscow (in Russian) (1976)

  33. Ohtsuka K., Bochniak M.: Shape sensitivity analysis of stress intensity factors by generalized J-integrals. Math. Meth. Appl. Sci. 21, 1343–1363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rudoy E.M.: Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut. Siberian Math. J. 50, 341–354 (2009)

    Article  Google Scholar 

  35. Rudoy E.M.: Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack. Appl. Mech. Tech. Phys. 52, 252–263 (2011)

    Article  MathSciNet  Google Scholar 

  36. Rudoy E.M.: The Griffith formula and Cherepanov-Rice integral for a plate with a rigid inclusion and a crack. J. Math. Sci. 186, 511–529 (2012)

    Article  MathSciNet  Google Scholar 

  37. Sokolowski J., Zolesio J.-P.: Introduction to Shape Optimization. Shape Sensitivity Analisys. Springer, Berlin (1992)

    Book  Google Scholar 

  38. Taroco E.: Shape sensitivity analysis in linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 188, 697–712 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Van Goethem N., Novotny A.A.: Crack nucleation sensitivity analysis. Math. Methods Appl. Sci. 33, 1978–1994 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Rudoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudoy, E.M. Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body. Z. Angew. Math. Phys. 66, 1923–1937 (2015). https://doi.org/10.1007/s00033-014-0471-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0471-0

Mathematics Subject Classification

Keywords

Navigation