Skip to main content
Log in

Well-posedness of the modified Camassa–Holm equation in Besov spaces

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the modified Camassa–Holm equation of the form

$$y_t + 2 u_x y + uy_x = 0, \quad y = (1 - \partial_x^2)^{2}u.$$

We prove that the Cauchy problem for this equation is locally well-posed in the critical Besov space \({B_{2, 1}^{7/2}}\) or in \({B_{p, r}^{s}}\) with \({1\leq p, r\leq + \infty}\), \({s > \max\{3 + 1/p, 7/2\}}\). Particularly, our method used to prove the local well-posedness in \({B_{2, 1}^{7/2}}\) is different from the previous one used in critical Besov space which involves extracting a convergent subsequence from an iterative sequence. We also prove that if a weaker \({B_{p, r}^q}\)-topology is used, then the solution map becomes Hölder continuous. Furthermore, we obtain the peakon-like solution which enable us to prove the ill-posedness in \({B_{2, \infty}^{7/2}}\). Finally, when \({x \in \mathbb{T} = \mathbb{R}/2 \pi \mathbb{Z}}\), we show that the solution map is not uniformly continuous in \({B_{2, r}^{s}}\) with \({1\leq r\leq \infty}\) and \({s > 7/2}\) or \({r = 1, s = 7/2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt W., Bu S.: Operator-valued fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. (2) 47, 15–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16, 319–361 (1966)

    Article  Google Scholar 

  3. Bahouri H., Chemin J., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  4. Bressan A., Constantin A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183(2), 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressan A., Constantin A.: Global Dissipative Solutions of the Camassa–Holm Equation. Anal. Appl. 5(1), 1–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Camassa R., Holm D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chemin, J.: Perfect incompressible fluids. In: Oxford Lectures Series in Mathematics and its Applications, vol. 14. The Clarendon Press, Oxford University Press, New York (1998)

  8. Chemin, J.:Localization in Fourier space and Navier–Stokes. In: Phase Space Analysis of Partial Differential Equations: in: CRM Series, Scuola Norm. Sup., Pisa., pp. 53–136 (2004)

  9. Chen, D., Li, Y., Yan, W.:The Cauchy Problem for the Generalized Novikov Equation. Discrete Contin. Dyn. Syst. Ser. A 35, 871–889 (2015)

  10. Coclite G.M., Holden H., Karlsen K.H.: Well-posedness of higher-order Camassa–Holm equations. J. Differ. Eqn. 246, 929–963 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin A.: On the Cauchy problem for the periodic Camassa–Holm equation. J. Differ. Eqn. 10, 218–235 (1997)

    Article  MathSciNet  Google Scholar 

  12. Constantin A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin A., Escher J.: Global existence and blow-up for a shallow water equation. Ann. Scuola. Norm. Sup. Pisa. 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Constantin A., Escher J.: Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51, 475–504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Constantin A., Kappeler T., Kolev B., Topalov P.: On geodesic exponential maps of the Virasoro group. Ann. Glob. Anal. Geom. 31(2), 155–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Danchin R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Danchin R.: A few remarks on the Camassa–Holm equation. Differ. Integral Equ. 14, 953–988 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Danchin R.: A note on well-posedness for Camassa–Holm equation. J. Differ. Eqn. 192(2), 429–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Danchin, R.: Fourier analysis method for PDEs. Lect. Notes. http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf (2005)

  21. Danchin R.: Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Commun. Partial Differ. Eqn. 32, 1373–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Danchin R., Mucha P.B.: A critical functional framework for the inhomogeneous Navier–Stokes equations in the half-space. J. Funct. Anal. 256, 881–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. De Lellis C., Kappeler T., Topalov P.: Low-regularity solutions for the periodic Camassa–Holm equation. Commun. Partial Differ. Eqn. 32, 87–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fokas A., Fuchssteiner B.: Symplectic structures, their Bäklund transformations and hereditary symmetries. Phys. D 4, 47–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fu Y., Liu Z.: Non-uniform dependence on initial data for the periodic modified Camassa–Holm equation. Nonlinear Differ. Equ. Appl. (2012). doi:10.1007/s00030-012-0177-y

  26. Himonas A., Holliman C.: The Cauchy problem for a generalized Camassa–Holm equation. Adv. Differ. Eqn. 19(1-2), 161–200 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Himonas A., Holmes J.: Hölder continuity of the solution map for the Novikov equation. J. Math. Phys. 54, 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  28. Himonas A., Kenig C.: Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Eqn. 22, 201–224 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Himonas A., Kenig C., Misiołek G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Eqn. 35, 1145–1162 (2010)

    Article  MATH  Google Scholar 

  30. Himonas A., Misiołek G.: The Cauchy problem for an integrable shallow water equation. Differ. Integral Eqn. 14, 821–831 (2001)

    MATH  Google Scholar 

  31. Holden H., Raynaud X.: Dissipative solutions for the Camassa–Holm equation. Discrete Contin. Dyn. Syst. 24, 1047–1112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Holmes J.: Continuity properties of the data-to-solution map for the generalized Camassa–Holm equation. J. Math. Anal. Appl. 417, 635–642 (2014)

    Article  MathSciNet  Google Scholar 

  33. Kenig C., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Khesin B., Misiolek G.: Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176, 116–144 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu J.: The Cauchy problem of a periodic 2-component \({\mu}\) -Hunter–Saxton system in Besov spaces. J. Math. Anal. Appl. 399, 650–666 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. McKean H.P.: Breakdown of a shallow water equation. Asian J. Math. 2(4), 867–874 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Mclachlan R., Zhang X.: Well-posedness of modified Camassa–Holm equations. J. Diffre. Eqn. 246, 3241–3259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Misiolek G.: Classical solutions of the periodic Camassa–Holm equation. Geom. Funct. Anal. 12, 1080–1104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schmeisser H.J., Triebel H.: Topics in Fourier analysis and function spaces. Wiley in Chichester, New York (1987)

    Google Scholar 

  40. Tang H., Zhao Y., Zhao Y., Liu Z.: A note on the solution map for the periodic Camassa–Holm equation. Appl. Anal. (2013). doi:10.1080/00036811.2013.847923

  41. Tang H., Liu Z.: Continuous properties of the solution map for the Euler equations. J. Math. Phys. 55, 031504 (2014)

    Article  MathSciNet  Google Scholar 

  42. Triebel H.: Theory of function spaces. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  43. Vishik M.: Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal. 145, 197–214 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu X., Yin Z.: A note on the Cauchy problem of the Novikov equation. Appl. Anal. (2012). doi:10.1080/00036811.2011.649735

  45. Xin Z., Zhang P.: On the weak solution to a shallow water equation. Commun. Pure Appl. Math. 53, 1411–1433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Tang.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 11171115).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Liu, Z. Well-posedness of the modified Camassa–Holm equation in Besov spaces. Z. Angew. Math. Phys. 66, 1559–1580 (2015). https://doi.org/10.1007/s00033-014-0483-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0483-9

Mathematics Subject Classification

Keywords

Navigation