Skip to main content
Log in

Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with an initial-boundary value problem for the chemotaxis system

$$\left\{\begin{array}{ll} u_t = \nabla \cdot (D (u) \nabla u)- \nabla \cdot (u \nabla v), \quad & x\in \Omega, \quad t > 0, \\ v_t= \Delta v-uv, \quad & x \in \Omega, \quad t > 0, \end{array}\right.$$

under homogeneous Neumann boundary conditions in a convex smooth bounded domain \({\Omega\subset \mathbb{R}^n}\) with \({n\geq3}\), where the diffusion function D(u) satisfying

$$\begin{array}{ll}D(u)\geq c_Du^{m-1}\quad\text{for all}\,\,u > 0 \end{array}$$

with some c D  > 0 and m > 1. The main goal of this paper was to extend a previous result on global existence of solutions by Wang et al. (Z Angew Math Phys 65:1137–1152, 2014) under the condition that \({m > 2-\frac{2}{n}}\) can be relaxed to \({m > 2-\frac{6}{n+4}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.J., Triebel, H. (eds.) Function Spaces, Differential Operators and Nonlinear Analysis, in: Teubner-Texte Math., vol. 133, Teubner, Stuttgart, Leipzig, 1993, pp. 9–126

  2. Burczak J., Ciéslak T., Morales-Rodrigo C.: Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller–Segel system. Nonlinear Anal. 75, 5215–5228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cieślak T., Stinner C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    Article  MATH  Google Scholar 

  4. Cieślak T., Stinner C.: Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cieślak T., Laurençot P.: Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system. Ann. I. H. Poincaré-AN 27, 437–446 (2010)

    Article  MATH  Google Scholar 

  6. Choi Y.S., Wang Z.A.: Prevention of blow-up by fast diffusion in chemotaxis. J. Math. Anal. Appl. 362, 553–564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delgado M., Gayte I., Morales-Rodrigo C., Suárez A.: An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary. Nonlinear Anal. 72, 330–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Francesco M., Lorz A., Markowich P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. Ser. A 28, 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duan R.J., Lorz A., Markowich P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duan, R.J., Xiang, Z.Y.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Not. (2012). doi:10.1093/imrn/rns270

  11. Friedman A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    MATH  Google Scholar 

  12. Herrero M.A., Velázquez J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 24(4), 633–683 (1997)

    MATH  Google Scholar 

  13. Hillen T., Painter K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horstmann D., Wang G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horstmann D., Winkler M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  17. Kowalczyk R., Szymańska Z.: On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 343, 379–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu J.G., Lorz A.: A coupled chemotaxis-fluid model: global existence. Ann. I. H. Poincaré-AN 28, 643–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lorz A.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkc . Ekvac. Ser. Int. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Nirenberg L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa Cl. Sci. 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  22. Osaki K., Yagi A.: Finite dimensional attractors for one-dimensional Keller–Segel equations. Funkc. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Tao Y., Wang Z.A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23, 1–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tao Y., Winkler M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. Ser. A 32, 1901–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tao Y., Winkler M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. I. H. Poincaré-AN 30, 157–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tao Y., Winkler M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tao Y., Winkler M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tao Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381, 521–529 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Temam R.: Navier–Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl., vol. 2. North-Holland, Amsterdam (1977)

    Google Scholar 

  30. Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn, Applied Mathematical Sciences, vol. 68. Springer, New York (1997)

    Book  Google Scholar 

  31. Tuval I., Cisneros L., Dombrowski C., Wolgemuth C.W., Kessler J.O., Goldstein R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  32. Wang L.C., Mu C.L., Zhou S.M.: Boundedness in a parabolic–parabolic chemotaxis system with nonlinear diffusion. Z. Angew. Math. Phys. 65, 1137–1152 (2014)

    Article  MathSciNet  Google Scholar 

  33. Wang L.C., Li Y.H., Mu C.L.: Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. Ser. A 34, 789–802 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang L.C., Mu C.L., Zheng P.: On a quasilinear parabolic–elliptic chemotaxis system with logistic source. J. Differ. Equ. 256, 1847–1872 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

  36. Winkler M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MATH  Google Scholar 

  37. Winkler M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  38. Winkler M.: Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–352 (2012)

    Article  MATH  Google Scholar 

  39. Winkler M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Winkler M.: Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachr. 283, 1664–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winkler M., Djie K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72, 1044–1064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yagi A.: Norm behavior of solutions to a parabolic system of chemotaxis. Math. Jpn. 45, 241–265 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Mu, C., Lin, K. et al. Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant. Z. Angew. Math. Phys. 66, 1633–1648 (2015). https://doi.org/10.1007/s00033-014-0491-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0491-9

Mathematics Subject Classification

Keywords

Navigation