Skip to main content
Log in

Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with the Neumann boundary value problem for the system

$$\left\{\begin{array}{lll}u_t = \nabla \cdot \left(D(u) \nabla u\right) - \nabla \cdot \left(S(u) \nabla v\right) + f(u), &\quad x \in \Omega, \, t > 0,\\ v_t = \Delta v - v + u, &\quad x \in \Omega, \, t > 0\end{array}\right.$$

in a smooth bounded domain \({\Omega\subset{\mathbb{R}}^n}\) \({(n\geq1)}\), where the functions D(u) and S(u) are supposed to be smooth satisfying \({D(u)\geq Mu^{-\alpha}}\) and \({S(u)\leq Mu^{\beta}}\) with M > 0, \({\alpha\in{\mathbb{R}}}\) and \({\beta\in{\mathbb{R}}}\) for all \({u\geq1}\), and the logistic source f(u) is smooth fulfilling \({f(0)\geq0}\) as well as \({f(u)\leq a-\mu u^{\gamma}}\) with \({a\geq0}\), \({\mu > 0}\) and \({\gamma\geq1}\) for all \({u\geq0}\). It is shown that if

$$\alpha + 2\beta < \left\{\begin{array}{lll}\gamma - 1 + \frac{2}{n}, &\quad {\rm for} \, 1 \leq \gamma < 2,\\ \gamma - 1 + \frac{4}{n + 2}, &\quad {\rm for} \, \gamma \geq 2,\end{array}\right.$$

then for sufficiently smooth initial data, the problem possesses a unique global classical solution which is uniformly bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao X.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source. J. Math. Anal. Appl. 412, 181–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cieślak T., Stinner C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    Article  MATH  Google Scholar 

  3. Cieślak T., Stinner C.: Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cieślak T., Stinner C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)

    Article  MATH  Google Scholar 

  5. Hillen T., Painter K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Horstmann D., Wang G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Horstmann D., Winkler M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ishida S., Seki K., Yokota T.: Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  10. Lankeit J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258, 1158–1191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li X., Xiang Z.: Boundedness in quasilinear Keller–Segel equations with nonlinear sensitivity and logistic source. Discrete Contin. Dyn. Syst. 35, 3503–3531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mizoguchi N., Souplet P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Nakaguchi E., Osaki K.: Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation. Nonlinear Anal. 74, 286–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nakaguchi E., Osaki K.: Global solutions and exponential attractors of a parabolic–parabolic system for chemotaxis with subquadratic degradation. Discrete Contin. Dyn. Syst. Ser. B 18, 2627–2646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Osaki K., Tsujikawa T., Yagi A., Mimura M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Osaki K., Yagi A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Painter K.J., Hillen T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Quittner, P., Souplet, P.: Superlinear parabolic problems. Birkhäuser advanced texts: Basler Lehrbücher. [Birkhäuser advanced texts: Basel textbooks], Birkhäuser Verlag, Basel (2007). Blow-up, global existence and steady states

  20. Senba T., Suzuki T.: Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl. Anal. 8, 349–367 (2001) IMS Workshop on Reaction–Diffusion Systems (Shatin, 1999)

  21. Tao Y., Winkler M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang L., Li Y., Mu C.: Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 34, 789–802 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Winkler M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MATH  Google Scholar 

  24. Winkler M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse?. Math. Methods Appl. Sci. 33, 12–24 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Winkler M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Winkler M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. (9) 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  27. Winkler M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differ. Equ. 257, 1056–1077 (2014)

    Article  MATH  Google Scholar 

  28. Winkler M., Djie K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72, 1044–1064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiang T.: Boundedness and global existence in the higher-dimensional parabolic–parabolic chemotaxis system with/without growth source. J. Differ. Equ. 258, 4275–4323 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshan Zhang.

Additional information

The study was supported in part by National Natural Science Foundation of China (No. 11171063). The first author is also supported by the Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ1445) and the Key Technologies R&D Program of Henan Province (No. 132102110120).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, Y. Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source. Z. Angew. Math. Phys. 66, 2473–2484 (2015). https://doi.org/10.1007/s00033-015-0532-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0532-z

Mathematics Subject Classification

Keywords

Navigation