Skip to main content
Log in

Three-dimensional coupled thermoelastodynamic stress and flux induced wave propagation for isotropic half-space with scalar potential functions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot’s coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a \(6{\mathrm{th}}\)- and a \(2{\mathrm{nd}}\)-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in the literature for surface excitation, where a very good agreement is achieved. The formulations presented in this study may be used as benchmark for other related researches and it may be implemented in the related boundary integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barone, S., Patterson, E.A.: Polymer coating as a strain witness in thermoelasticity. J. Strain Anal. Eng. Des. 33(3), 223–232 (1998)

    Article  Google Scholar 

  2. Mackin, T., Purcell, T.: The use of thermoelasticity to evaluate stress redistribution and notch sensitivity in ceramic matrix composites. Exp. Tech. 20(2), 15–20 (1996)

    Article  Google Scholar 

  3. Varli, E.: Analysis of stress in a solid cylinder with periodic heat generation. A thesis submitted to the graduate school of natural and applied sciences-Middle East Technical University (2015)

  4. Sakagami, T., Izumi, Y., Kubo, S.: Successful application of thermoelasticity to remote inspection of fatigue cracks. In: Thermomechanics and Infra-Red Imaging, vol. 7, pp. 99-106. Springer (2011)

  5. Bills, B.G.: Thermoelastic bending of the lithosphere: implications for basin subsidence. Geophys. J. Int. 75(1), 169–200 (1983)

    Article  Google Scholar 

  6. Sclater, J.G., Francheteau, J.: The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the earth. Geophys. J. Int. 20(5), 509–542 (1970)

    Article  Google Scholar 

  7. Parker, R., Oldenburg, D.: Thermal model of ocean ridges. Nature 242(122), 137–139 (1973)

    Google Scholar 

  8. Davis, E., Lister, C.: Fundamentals of ridge crest topography. Earth Planet. Sci. Lett. 21(4), 405–413 (1974)

    Article  Google Scholar 

  9. Lanzano, P.: Thermoelastic deformations of the Earth’s lithosphere: a mathematical model. Earth Moon Planet. 34(3), 283–304 (1986)

    Article  MATH  Google Scholar 

  10. Lamb, H.: On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 203, 1–42 (1904)

    Article  MATH  Google Scholar 

  11. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover Publications, New York (1944)

    MATH  Google Scholar 

  12. Ewing, W.M., Jardetzky, W.S., Press, F.: Elastic Waves in Layered Media. McGraw-Hill, Bengaluru (1957)

    MATH  Google Scholar 

  13. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland Publishing Company, Amesterdam (1975)

    MATH  Google Scholar 

  14. Aki, K., Richards, P.G.: Quantitative Seismology: Theory and Methods, vol. 1. W. H. Freeman and Co., New York (1980)

    Google Scholar 

  15. Pak, R.Y.S.: Asymmetric wave propagation in an elastic half-space by a method of potentials. J. Appl. Mech. 54(1), 121–126 (1987)

    Article  Google Scholar 

  16. Nowinski, J.L.: Theory of Thermoelasticity with Applications, vol. 3. Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn (1978)

    Book  MATH  Google Scholar 

  17. Carlson, D.E.: Linear Thermoelasticity, Mechanics of Solids, vol. 2. Springer, Berlin (1972)

    Google Scholar 

  18. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lessen, M.: Thermoelasticity and thermal shock. J. Mech. Phys. Solids 5(1), 57–61 (1957)

    Article  MathSciNet  Google Scholar 

  20. Deresiewicz, H. : Solution of the equations of thermoelasticity. In: Proceedings of the third U.S. National Congress of Applied Mechanics (1958)

  21. Zorski, H.: Singular solutions for thermoelastic media. Bull. Acad. Pol. Sci. 6, 331–339 (1958)

    Google Scholar 

  22. Novatskii, V.: Problems of thermoelasticity. Izd. Akad. Nauk SSSR, Moscow, 364 (1962)

  23. Nowacki, W.: Thermoelasticity. International Series of Monographs on Aeronautics and Astronautics, vol. 3. Solid and Structural Mechanics. Reading, Addison-Wesley Pub. Co., Division I (1962)

    Google Scholar 

  24. Nowacki, W.: Green functions for the thermoelastic medium. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 12(9), 465–472 (1964)

    MATH  Google Scholar 

  25. Nowacki, W.: On the completeness of stress functions in thermoelasticity. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 15(9), 583–591 (1967)

    MATH  Google Scholar 

  26. Nowacki, W.: Dynamic Problems of Thermoelasticity. Springer, Dordrecht (1975)

    MATH  Google Scholar 

  27. Verruijt, A.: The completeness of Biot’s solution of the coupled thermoelastic problem. Q. Appl. Math. 26, 485–490 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chandrasekharaiah, D., Srikantiah, K.: Waves of general type propagating in a liquid layer sandwiched between two thermo-elastic half-spaces. Int. J. Eng. Sci. 22(3), 301–310 (1984)

    Article  MATH  Google Scholar 

  29. Chandrasekharaiah, D., Srikantiah, K.: Edge waves in a thermoelastic plate. Int. J. Eng. Sci. 23(1), 65–77 (1985)

    Article  MATH  Google Scholar 

  30. Chandrasekharaiah, D.: Heat-flux dependent micropolar thermoelasticity. Int. J. Eng. Sci. 24(8), 1389–1395 (1986)

    Article  MATH  Google Scholar 

  31. Chandrasekharaiah, D.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39(3), 355 (1986)

    Article  MATH  Google Scholar 

  32. Chandrasekharaiah, D.: One-dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation. J. Therm. Stresses 19(8), 695–710 (1996)

    Article  Google Scholar 

  33. Georgiadis, H., Rigatos, A., Brock, L.: Thermoelastodynamic disturbances in a half-space under the action of a buried thermal/mechanical line source. Int. J. Solids Struct. 36(24), 3639–3660 (1999)

    Article  MATH  Google Scholar 

  34. Ding, H., Guo, F., Hou, P.: General solutions of coupled thermoelastic problem. Appl. Math. Mech. 21(6), 631–636 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lykotrafitis, G., Georgiadis, H., Brock, L.: Three-dimensional thermoelastic wave motions in a half-space under the action of a buried source. Int. J. Solids Struct. 38(28), 4857–4878 (2001)

    Article  MATH  Google Scholar 

  36. Sharma, J.: On the propagation of thermoelastic waves in homogeneous isotropic plates. Indian J. Pure Appl. Math. 32(9), 1329–1342 (2001)

    MATH  Google Scholar 

  37. Svanadze, M.: Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures. J. Therm. Stresses 27(2), 151–170 (2004)

    Article  MathSciNet  Google Scholar 

  38. Babaei, M., Abbasi, M., Eslami, M.: Coupled thermoelasticity of functionally graded beams. J. Therm. Stresses 31(8), 680–697 (2008)

    Article  Google Scholar 

  39. Scalia, A., Svanadze, M.: Potential method in the linear theory of thermoelasticity with microtemperatures. J. Therm. Stresses 32(10), 1024–1042 (2009)

    Article  Google Scholar 

  40. Sheng, G., Wang, X.: Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells. Appl. Math. Model. 34(9), 2630–2643 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Scalia, A., Svanadze, M., Tracinà, R.: Basic theorems in the equilibrium theory of thermoelasticity with microtemperatures. J. Therm. Stresses 33(8), 721–753 (2010)

    Article  Google Scholar 

  42. Kumar, R., Panchal, M.: A study of axi-symmetric waves through an isotropic thermoelastic diffusive medium. Comput. Appl. Math. 30(2), 247–265 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Eskandari-Ghadi, M., Sture, S., Rahimian, M., Forati, M.: Thermoelastodynamics with scalar potential functions. J. Eng. Mech. 140(1), 74–81 (2013)

    Article  Google Scholar 

  44. Eskandari-Ghadi, M., Rahimian, M., Sture, S., Forati, M.: Thermoelastodynamics in transversely isotropic media with scalar potential functions. J. Appl. Mech. 81(2), 021013 (2014)

    Article  Google Scholar 

  45. Raoofian-Naeeni, M., Eskandari-Ghadi, M., Ardalan, A.A., Pak, R.Y.S., Rahimian, M., Hayati, Y.: Coupled thermoviscoelastodynamic Green’s functions for bi-material half-space. ZAMM 95(3), 260–282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Youssef, H.M., El-Bary, A.A.: Thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity. J. Therm. Stresses 37(12), 1379–1389 (2014)

    Article  Google Scholar 

  47. Hayati, Y., Eskandari-Ghadi, M., Raoofian, M., Rahimian, M., Ardalan, A.A.: Dynamic Green’s functions of an axisymmetric thermoelastic half-space by a method of potentials. J. Eng. Mech. 139(9), 1166–1177 (2012)

    Article  MATH  Google Scholar 

  48. Hayati, Y., Eskandari-Ghadi, M., Raoofian, M., Rahimian, M., Ardalan, A.A.: Frequency domain analysis of an axisymmetric thermoelastic transversely isotropic half-space. J. Eng. Mech. 139(10), 1407–1418 (2012)

    Article  Google Scholar 

  49. Hetnarski, R.B., Eslami, M.R.: Thermal Stresses—Advanced Theory and Applications. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  50. Truesdell, C., Antman, S.S., Carlson, D.E., Fichera, G., Gurtin, M.E., Naghdi, P.M.: Mechanics of Solids. : Volume II: Linear Theories of Elasticity and Thermoelasticity, Linear and Nonlinear Theories of Rods, Plates, and Shells. Springer, Berlin (1984)

    Google Scholar 

  51. Eringen, A.C., Şuhubi, E.S.: Elastodynamics: Linear theory, vol. 2. Academic Press, The University of Michigan, Ann Arbor (1975)

    MATH  Google Scholar 

  52. Sneddon, I.N.: The Use of Integral Transforms. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  53. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  54. Rahimian, M., Eskandari-Ghadi, M., Pak, R.Y.S., Khojasteh, A.: Elastodynamic potential method for transversely isotropic solid. J. Eng. Mech. 133(10), 1134–1145 (2007)

    Article  Google Scholar 

  55. Das, N., Lahiri, A., Sarkar, S.: Eigenvalue approach to three dimensional coupled thermoelasticity in a rotating transversely isotropic medium. Tamsui Oxford J. Math. Sci 25(3), 237–257 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The partial support from University of Tehran through 27840/1/08 to M. E. -G. during this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Eskandari-Ghadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayati, Y., Eskandari-Ghadi, M. Three-dimensional coupled thermoelastodynamic stress and flux induced wave propagation for isotropic half-space with scalar potential functions. Z. Angew. Math. Phys. 69, 18 (2018). https://doi.org/10.1007/s00033-018-0910-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0910-4

Keywords

Mathematics Subject Classification

Navigation