Skip to main content
Log in

Free boundary approach for the attachment in the initial phase of multispecies biofilm growth

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this work, a free boundary problem is presented for the attachment process in the initial phase of multispecies biofilm formation. The free boundary is represented by the biofilm thickness and it is assumed to be initially zero. The growth of attached species is governed by nonlinear hyperbolic PDEs. The free boundary evolution is governed by a first-order differential equation depending on the attachment, detachment, biomass velocity and substrates. The quasi-static diffusion of substrates is modelled by a system of semi-linear elliptic PDEs. The qualitative analysis of solutions leads to prove existence, uniqueness and some properties of solutions. We highlight that the free boundary velocity is greater than the characteristic velocity during the first instants of biofilm formation and the free boundary is a space-like line. It is proved that the attachment function depends linearly on the concentrations of all the attaching species. The first phase of biofilm growth is shown to be completely determined by environmental conditions and characterized by a specific mathematical inequality. The opposite inequality describes the further phase where the bulk liquid stops to directly affect the biofilm life. The mentioned inequalities could be assumed as rigorous definitions of non-mature and mature biofilms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., Habimana, O., Desvaux, M., Renier, S., Nychas, G.-J.: Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci. 97, 298–309 (2014)

    Article  Google Scholar 

  2. Donlan, R.M., Costerton, J.W.: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193 (2002)

    Article  Google Scholar 

  3. Mattei, M.R., Frunzo, L., D’Acunto, B., Pechaud, Y., Pirozzi, F., Esposito, G.: Continuum and discrete approach in modeling biofilm development and structure: a review. J. Math. Biol. 76, 945–1003 (2018)

    Article  MathSciNet  Google Scholar 

  4. Marine, J., Myers, C.P., Picquet, G., Zaidel, L., Wu, D., Uhrich, K.E.: Reduction of bacterial attachment on hydroxyapatite surfaces: using hydrophobicity and chemical functionality to enhance surface retention and prevent attachment. Colloids Surf. B Biointerfaces 167, 531–537 (2018)

    Article  Google Scholar 

  5. Donlan, R.M.: Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890 (2002)

    Article  Google Scholar 

  6. Characklis, W.G., Cooksey, K.E.: Biofilms and microbial fouling. Adv. Appl. Microbiol. 29, 93–138 (1983)

    Article  Google Scholar 

  7. Geng J., Henry N.: Short time-scale bacterial adhesion dynamics. In: Linke D., Goldman A. (eds) Bacterial Adhesion. Advances in Experimental Medicine and Biology, vol 715. Springer, Dordrecht, pp. 315–331 (2011)

    Google Scholar 

  8. Epstein, A.K., Hong, D., Kim, P., Aizenberg, J.: Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces. N. J. Phys. 15, 095018 (2013)

    Article  Google Scholar 

  9. Mahyudin, N.A., Mat Daud, N.I.H., Ab Rashid, N.-K.M., Muhialdin, B.J., Saari, N., Noordin, W.N., Norhana, Wan: Bacterial attachment and biofilm formation on stainless steel surface and their in vitro inhibition by marine fungal extracts. J. Food Saf. 38, e12456 (2018)

    Article  Google Scholar 

  10. Batstone, D.J., Picioreanu, C., Van Loosdrecht, M.C.M.: Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Res. 40, 3099–3108 (2006)

    Article  Google Scholar 

  11. Wallace, H.A., Li, L., Davidson, F.A.: The effect of cell death on the stability of a growing biofilm. Math. Modell. Nat. Phenom. 11, 33–48 (2016)

    Article  MathSciNet  Google Scholar 

  12. Zhang, T., Cogan, N.G., Wang, Q.: Phase field models for biofilms. I. Theory and one-dimensional simulations. SIAM J. Appl. Math. 69, 641–669 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ward, J.P., King, J.R., Koerber, A.J., Croft, J.M., Sockett, R.E., Williams, P.: Early development and quorum sensing in bacterial biofilms. J. Math. Biol. 47, 23–55 (2003)

    Article  MathSciNet  Google Scholar 

  14. Emerenini, B.O., Hense, B.A., Kuttler, C., Eberl, H.J.: A mathematical model of quorum sensing induced biofilm detachment. PLoS One 10, e0132385 (2015)

    Article  Google Scholar 

  15. Coclite, G.M., Coclite, M.M., Mishra, S.: On a model for the evolution of morphogens in a growing tissue. SIAM J. Math. Anal. 48, 1575–1615 (2016)

    Article  MathSciNet  Google Scholar 

  16. Coclite, G.M., Coclite, M.M.: On a model for the evolution of morphogens in a growing tissue II: \(\theta =\log (2)\) case. Zeitschrift für angewandte Mathematik und Physik 68, 92–112 (2017)

    Article  Google Scholar 

  17. Coclite, G.M., Coclite, M.M.: On a model for the evolution of morphogens in growing tissue III: \(\theta <\log (2)\). J. Differ. Equ. 263, 1079–1124 (2017)

    Article  Google Scholar 

  18. Klapper, I., Szomolay, B.: An exclusion principle and the importance of mobility for a class of biofilm models. Bull. Math. Biol. 73, 2213–2230 (2011)

    Article  MathSciNet  Google Scholar 

  19. Palmer, J., Flint, S., Brooks, J.: Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 34, 577–588 (2007)

    Article  Google Scholar 

  20. D’Acunto, B., Frunzo, L.: Free boundary problem for an initial cell layer in multispecies biofilm formation. Appl. Math. Lett. 25, 20–26 (2012)

    Article  MathSciNet  Google Scholar 

  21. Coclite, G.M., Garavello, M.: Vanishing viscosity for mixed systems with moving boundaries. J. Funct. Anal. 264, 1664–1710 (2013)

    Article  MathSciNet  Google Scholar 

  22. Wanner, O., Gujer, W.: A multispecies biofilm model. Biotechnol. Bioeng. 28, 314–328 (1986)

    Article  Google Scholar 

  23. Abbas, F., Sudarsan, R., Eberl, H.J.: Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Math. Biosci. Eng. 9, 215–239 (2012)

    Article  MathSciNet  Google Scholar 

  24. Mašić, A., Eberl, H.J.: A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor. Bull. Math. Biol. 76, 27–58 (2014)

    Article  MathSciNet  Google Scholar 

  25. Pavel, N.H.: Differential Equations. Flow-Invariance and Applications. Pitman Res, Notes Math (1984)

  26. Tricomi, F.G.: Integral Equations. Courier corporation, North Chelmsford (1985)

    Google Scholar 

  27. D’Acunto, B., Frunzo, L., Klapper, I., Mattei, M.R.: Modeling multispecies biofilms including new bacterial species invasion. Math. Biosci. 259, 20–26 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study has been performed under the auspices of the G.N.F.M. of Indam. The authors acknowledge the Progetto Giovani G.N.F.M. 2017 Analisi di sistemi biologici complessi and the project VOLAC—Valorization of OLive oil wastes for sustainable production of biocide-free Antibiofilm Compounds of Cariplo Foundation (Grant Number 2017-0977) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mattei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Acunto, B., Frunzo, L., Luongo, V. et al. Free boundary approach for the attachment in the initial phase of multispecies biofilm growth. Z. Angew. Math. Phys. 70, 91 (2019). https://doi.org/10.1007/s00033-019-1134-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1134-y

Keywords

Mathematics Subject Classification

Navigation