Skip to main content
Log in

Low-Noise Low-Pass Filter for ECG Portable Detection Systems with Digitally Programmable Range

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the design of an operational transconductance amplifier-C (OTA-C) low-pass filter for a portable Electrocardiogram (ECG) detection system. A fifth-order Butterworth filter using ladder topology is utilized to reduce the effect of component tolerance and to provide a maximally flat response. The proposed filter is based on a novel class AB digitally programmable fully differential OTA circuit. Based on this, PSPICE simulation results for the filter using 0.25-μm technology and operating under ±0.8 V voltage supply are also given. The filter provides a third harmonic distortion (HD3) of 53.5 dB for 100 mV p-p @50 Hz sinusoidal input, input referred noise spectral density of , total power consumption of 30 μW, and a bandwidth of 243 Hz. These results demonstrate the ability of the filter to be used for ECG signal filtering that is located within 150 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. H. Alzaher, H. Elwan, M. Ismail, A CMOS fully balanced second-generation current conveyor. IEEE Trans. Circuits Syst. II 50, 278–287 (2003)

    Article  Google Scholar 

  2. R. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd edn. (Wiley, New York, 2010)

    Book  Google Scholar 

  3. E. Berbari, Principles of electrocardiography, in The Biomedical Engineering Handbook, ed. by E.J. Bronzino 2nd edn. (CRC Press, Boca Raton, 2000)

    Google Scholar 

  4. A. Bharadwaj, U. Kamath, Accurate ECG signal processing. Technical report. Cypress Semiconductor Corporation (2011)

  5. H. Elwan, M. Ismail, A CMOS digitally programmable class AB OTA circuit. IEEE Trans. Circuits Syst. II 47, 1551–1556 (2000)

    Article  Google Scholar 

  6. T. Hassan, S. Mahmoud, New CMOS DVCC realization and applications to instrumentation amplifier and active RC filters. AEÜ, Int. J. Electron. Commun. 64, 47–55 (2010)

    Article  Google Scholar 

  7. S. Lee, C. Cheng, Systematic design and modeling of a OTA-C filter for portable ECG detection. IEEE Trans. Biomed. Circuits Syst. 3, 53–64 (2009)

    Article  Google Scholar 

  8. S. Mahmoud, I. Awad, Fully differential CMOS current feedback operational amplifier. Analog Integr. Circuits Signal Process. 43, 61–69 (2005)

    Article  Google Scholar 

  9. S. Mahmoud, A. Soliman, A CMOS programmable balanced output transconductor for analog signal processing. Int. J. Electron. 82, p605–620 (1997)

    Article  Google Scholar 

  10. S. Mahmoud, A. Soliman, New CMOS fully differential difference transconductors and application to fully differential filters suitable for VLSI. Microelectron. J. 30, 169–192 (1999)

    Article  Google Scholar 

  11. S. Mahmoud, A. Soliman, New MOS-C biquad filter using the current feedback operational amplifier. IEEE Trans. Circuits Syst. I 26, 1431–1440 (1999)

    Google Scholar 

  12. K. Ng, P. Chan, A CMOS analog front-end IC for portable EEG/ECG monitoring applications. IEEE Trans. Circuits Syst. I 52, 2335–2347 (2005)

    Article  Google Scholar 

  13. R. Northrop, Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation, 1st edn. (CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  14. E. Rodriguez-Villegas, A. Yufera, A. Rueda, A 1.25-V micropower Gm-C filter based on FGMOS transistors operating in weak inversion. IEEE J. Solid-State Circuits 39, 100–111 (2004)

    Article  Google Scholar 

  15. M. Shaker, S. Mahmoud, A. Soliman, High-order Gm-C filters with current transfer function based on multiple loop feedback, in IEEE International Conference on Signal Processing and Communications (ICSPC 2007), (2007), pp. 85–88

    Chapter  Google Scholar 

  16. S. Solis-Bustos, A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications. IEEE Trans. Circuits Syst. II 47, 1391–1398 (2000)

    Article  Google Scholar 

  17. R. Udrea, D. Vizireanu, S. Ciochina, An improved spectral subtraction method for speech enhancement using a perceptual weighting filter. Digit. Signal Process. 18, 581–587 (2008)

    Article  Google Scholar 

  18. R. Udrea, D. Vizireanu, S. Ciochina, S. Halunga, Nonlinear spectral subtraction method for colored noise reduction using multi-band Bark scale. Signal Process. 88, 1299–1303 (2008)

    Article  MATH  Google Scholar 

  19. A. Veeravalli, E. Sanchez-Sinencio, J. Silva-Martinez, Transconductance amplifier structures with very small transconductances: a comparative design approach. IEEE J. Solid-State Circuits 37, 770–775 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soliman A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, S.A., Bamakhramah, A. & Al-Tunaiji, S.A. Low-Noise Low-Pass Filter for ECG Portable Detection Systems with Digitally Programmable Range. Circuits Syst Signal Process 32, 2029–2045 (2013). https://doi.org/10.1007/s00034-013-9564-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9564-9

Keywords

Navigation