Skip to main content
Log in

Novel AM/FM/ASK/FSK/PSK/QAM Signal Generator Based on a Digitally Programmable CDTA

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel \(\pm \)0.8V current differencing transconductance amplifier (CDTA) with programmable and tunable ability is proposed and analyzed. The digitally programmable CDTA is built around a lot of programmable current mirror arrays and three linear tunable transconductors, which contains separate analog and digital tuning feature. Moreover, a CDTA-based general sinusoidal signal generator circuit with two fixed-value capacitors and two grounded resistors is presented here. The generator circuit can be configured to perform the following signal modulation techniques: amplitude modulation, frequency modulation, amplitude shift keying, frequency shift keying, phase shift keying, and quadrature amplitude modulation. Cadence Virtuoso Analog Design Environment using GlobalFoundries’ 0.18 um CMOS process is used to develop the generator circuit and verify the theory by the post-layout simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.T. Abuelma’Atti, New ASK/FSK/PSK/QAM wave generator using multiple-output operational transconductance amplifiers. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(4), 487–490 (2011)

    Article  Google Scholar 

  2. M.T. Abuelma’Atti, New ASK/FSK/PSK/QAM wave generator using a single current-controlled multiple output current conveyor. Int. J. Electron. 89(1), 35–43 (2002)

    Article  Google Scholar 

  3. G. Al-Kadi, R.V.D. Beek, M. Ciacci, P. Kompan, M. Stark, A 13.56 Mbps PSK receiver for very high data rate 13.56 MHz smart card and NFC applications, in Proceedings of the ICCE (ICCE, 2012), pp. 180–182

  4. H. Alzaher, N. Tasadduq, O. Al-Ees, F. Al-Ammari, A complementary metal-oxide semiconductor digitally programmable current conveyor. Int. J. Circuit Theory Appl. 41(1), 69–81 (2013)

    Google Scholar 

  5. D. Biolek, CDTA–building block for current-mode analog signal processing, in Proceedings of the ECCTD’03, (Krakow, 2003), pp. 397–400

  6. D. Biolek, E. Hancioglu, A.Ü. Keskin, High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. AEÜ. Int. J. Electron. Commun. 62(2), 92–96 (2008)

    Article  Google Scholar 

  7. D. Biolek, A.Ü. Keskin, V. Biolkova, Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circuits Dev. Syst. 4(6), 496–502 (2010)

    Article  Google Scholar 

  8. T. Bumrongchoke, D. Duangmalai, W. Jaikla, Current differencing transconductance amplifier based current-mode quadrature oscillator using grounded capacitors, in Proceedings of the ISCIT (2010), p. 192–195

  9. H.T. Chen, L. Edward, R. Geiger, A 2 GHz VCO with process and temperature compensation, in Proceedings of the ISCAS (1999), p. 569–572

  10. J. Cheng, L. Milor, A bist solution for the test of I/O speed, in Proceedings of the ITC (2003), p. 1023–1030

  11. H.-C. Chien, J.-M. Wang, Dual-mode resistorless sinusoidal oscillator using single CCCDTA. Microelectron. J. 44(3), 216–224 (2013)

    Article  Google Scholar 

  12. A. Demir, Phase noise and timing jitter in oscillators with colored-noise sources. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(12), 1782–1791 (2002)

    Article  Google Scholar 

  13. K.L. Du, M.N.S. Swamy, Wireless Communication Systems: from RF Subsystems to 4G Enabling Technologies (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  14. I.M. Filanovsky, A. Allam, Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(7), 876–884 (2001)

    Article  Google Scholar 

  15. W. Jaikla, M. Siripruchyanun, J. Bajer, D. Biolek, A simple current-mode quadrature oscillator using single CDTA. Radioengineering 17(4), 33–40 (2008)

    Google Scholar 

  16. W. Jaikla, A. Lahiri, Resistor-less current-mode four-phase quadrature oscillator using CCCDTAs and grounded capacitors. AEÜ. Int. J. Electron. Commun. 66, 214–218 (2012)

    Article  Google Scholar 

  17. J. Jin, C. Wang, Single CDTA-based current-mode quadrature oscillator. AEÜ. Int. J. Electron. Commun. 66(11), 933–936 (2012)

    Article  MathSciNet  Google Scholar 

  18. F. Kacar, H.H. Kuntman, A new, improved CMOS realization of CDTA and its filter applications. Turk. J. Electr. Eng. Comput. Sci. 19, 631–642 (2011)

    Google Scholar 

  19. A.Ü. Keskin, D. Biolek, E. Hancioglu, V. Biolková, Current-mode KHN filter employing current differencing transconductance amplifiers. AEÜ. Int. J. Electron. Commun. 60(6), 443–446 (2006)

    Article  Google Scholar 

  20. A.Ü. Keskin, D. Biolek, Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc. Circuits Dev. Syst. 153, 248–252 (2006)

    Article  Google Scholar 

  21. F. Khateb, D. Biolek, Bulk-driven current differencing transconductance amplifier. Circuits Syst. Signal Process. 30, 1071–1089 (2011)

    Article  Google Scholar 

  22. F. Khateb, J. VÁvra, D. Biolek, A novel current-mode full-wave rectifier based on one CDTA and two diodes. Radioengineering 19(3), 437–445 (2010)

    Google Scholar 

  23. F. Khateb, F. Kacar, N. Khatib, D. Kubánek, High-precision differential-input buffered and external transconductance amplifier for low-voltage low-power applications. Circuits Syst. Signal Process. 32(2), 453–476 (2013)

    Article  Google Scholar 

  24. A. Lahiri, A. Chowdhury, A novel first-order current-mode all-pass filter using CDTA. Radioengineering 18(3), 300–306 (2009)

    Google Scholar 

  25. A. Lahiri, Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integr. Circuits Signal Process. 61(2), 199–203 (2009)

    Article  Google Scholar 

  26. K.R. Lakshmikumar, V. Mukundagiri, S.L.J. Gierkink, A process and temperature compensated two-stage ring oscillator. Proc. IEEE CICC 07, 691–694 (2007)

    Google Scholar 

  27. P. Lamun, P. Phasukkit, M. Kumngern, K. Dejhan, A new mixed-mode quadrature oscillator using a single CCCDTA. Proc. ECTI-CON’ 08, 141–144 (2011)

    Google Scholar 

  28. J. Lan, Z. Gao, Y. Wang, L. Liu, R. Li, Improve the dynamic matching of the source-switching charge pump for high-performance phase-locked loops, in Proceedings of the ICSICT (2010), p. 448–450

  29. Y.A. Li, A modified CDTA (MCDTA) and its applications: designing current-mode sixth-order elliptic band-pass filter. Circuits Syst. Signal Process. 30(6), 1383–1390 (2011)

    Article  Google Scholar 

  30. Y.A. Li, A new single MCCCDTA based Wien-bridge oscillator with AGC. AEÜ. Int. J. Electron. Commun. 66, 153–156 (2012)

    Article  Google Scholar 

  31. S. Meillère, H. Barthélemy, M. Martin, 13.56 MHz CMOS transceiver for RFID applications. Analog Integr. Circuits Signal Process 49(3), 249–256 (2006)

    Article  Google Scholar 

  32. O. Oliaei, J. Porte, Compound current conveyor. Electron. Lett. 33(4), 253–254 (1997)

    Article  Google Scholar 

  33. B. Pankiewicz, M. Wojcikowski, S. Szczepanski, Y. Sun, A field programmable analog array for CMOS continuous-time OTA-C filter applications. IEEE J. Solid-State Circuits. 37(2), 125–136 (2002)

    Article  Google Scholar 

  34. D. Prasad, D.R. Bhaskar, A.K. Singh, Universal current-mode biquad filter using dual output current differencing transconductance amplifier. AEÜ. Int. J. Electron. Commun. 63, 497–501 (2009)

    Article  Google Scholar 

  35. D. Prasad, D.R. Bhaskar, A.K. Singh, Multi-function biquad using single current differencing transconductance amplifier. Analog Integr. Circuits Signal Process. 61, 309–313 (2009)

    Article  Google Scholar 

  36. D. Prasad, D.R. Bhaskar, A.K. Singh, Electronically controllable grounded capacitor current-mode quadrature oscillator using single MO-CCCDTA. Radioengineering 20(1), 354–359 (2011)

    Google Scholar 

  37. B. Razavi, Design of Analog CMOS Integrated Circuits (Tata McGraw-Hill Education, Chennai, 2002)

    Google Scholar 

  38. C. Sakul, W. Jaikla, K. Dejhan, New resistorless current-mode Quadrature Oscillators Using 2 CCCDTAs and Grounded Capacitors. Radioengineering 20(4), 890–896 (2011)

    Google Scholar 

  39. S.K. Sanyal, U.C. Sarker, R. Nandi, Microprocessor controlled FSK/PSK wave modulation: experimental model for a digital communication laboratory. IEEE Trans. Educ. 34(2), 189–192 (1991)

    Article  Google Scholar 

  40. N.A. Shah, M. Quadri, S.Z. Iqbal, CDTA based universal transadmittance filter. Analog Integr. Circuits Signal Process. 52, 65–69 (2007)

    Article  Google Scholar 

  41. N.A. Shah, M. Quadri, S.Z. Iqbal, High output impedance current-mode all-pass inverse filter using CDTA. Indian J. Pure Appl. Phys. 46, 893–896 (2008)

    Google Scholar 

  42. M. Siripruchyanun, P. Koseeyaporn, J. Koseeyaporn, P. Wardkein, Fully current controllable AM/FM modulator and quadrature sinusoidal oscillator based on CCCIIs, in Proceedings of the ISCAS (2004), pp: 549–552

  43. M. Siripruchyanun, W. Jaikla, CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. AEÜ. Int. J. Electron. Commun. 62(4), 277–287 (2008)

    Article  Google Scholar 

  44. M. Siripruchyanun, W. Jaikla, Electronically controllable current-mode universal biquad filter using single DO-CCCDTA. Circuits Syst. Signal Process. 27, 113–122 (2008)

    Article  Google Scholar 

  45. K. Sundaresan, P.E. Allen, F. Ayazi, Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J. Solid-State Circuits. 41(2), 433–442 (2006)

    Article  Google Scholar 

  46. W. Tangsrirat, T. Pukkalanun, Structural generation of two integrator loop filters using CDTAs and grounded capacitors. Int. J. Circuit Theory Appl. 39, 31–45 (2011)

    Article  MATH  Google Scholar 

  47. W. Tangsrirat, T. Pukkalanun, W. Surakampontorn, Resistorless realization of current-mode first-order all-pass filter using current differencing transconductance amplifiers. Microelectron. J. 41, 178–183 (2010)

    Article  Google Scholar 

  48. W. Tangsrirat, W. Tanjaroen, T. Pukkalanun, Current-mode multiphase sinusoidal oscillator using CDTA-based allpass sections. AEÜ. Int. J. Electron. Commun. 63(7), 616–622 (2009)

    Article  Google Scholar 

  49. W. Tangsrirat, W. Tanjaroen, Current-mode multiphase sinusoidal oscillator using current differencing transconductance amplifiers. Circuits Syst. Signal Process. 27, 81–93 (2008)

    Article  Google Scholar 

  50. W. Tanjaroen, W. Tangsrirat, Current-mode second-order notch filter using CDTA-based allpass sections, in SICE Annual Conference (2008), p. 1143–1146

  51. A. Uygur, H. Kuntman, Low-voltage current differencing transconductance amplifier in a novel allpass configuration, in Proceedings of the MELECON’06, (2006), p. 23–26

  52. A. Uygur, H. Kuntman, Seventh-order elliptic video filter with 0.1 dB pass band ripple employing CMOS CDTAs. AEÜ. Int. J. Electron. Commun. 61, 320–328 (2007)

    Article  Google Scholar 

  53. J. Xu, C. Wang, J. Jin, Current differencing cascaded transconductance amplifier (CDCTA) and its applications on current-mode nth-order filters. Circuits Syst. Signal Process. 32(5), 2047–2063 (2013)

    Article  MathSciNet  Google Scholar 

  54. Y.Q. Zhou, Y.S. Zhao, A highly linear voltage-controlled cmos transconductance operational amplifier. J. Tianjin Univ. 30(3), 287–293 (1997)

    MathSciNet  Google Scholar 

  55. Z.K. Zhou, P.S. Zhu, Y. Shi, X. Qu, H.Y. Wang, X.M. Zhang, S. Qiu, N. Li, C. Gou, Z. Wang, B. Zhang, A resistorless CMOS voltage reference based on mutual compensation of \(V_{T}\) and \(V_{TH}\). IEEE Trans. Circuits Syst. II, Exp. Briefs 60(9), 582–586 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61274020), the natural science foundation of Hunan Province (NO. 14JJ7026), and the Open Fund Project of Key Laboratory in Hunan Universities (No. 13K015). We would like to thank the authors whose works we have cited throughout our paper and also thank the individuals who reviewed this article and gave valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Z., Wang, C., Jin, J. et al. Novel AM/FM/ASK/FSK/PSK/QAM Signal Generator Based on a Digitally Programmable CDTA. Circuits Syst Signal Process 34, 1635–1653 (2015). https://doi.org/10.1007/s00034-014-9921-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9921-3

Keywords

Navigation