Skip to main content
Log in

On Gridless Sparse Methods for Multi-snapshot Direction of Arrival Estimation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The authors have recently proposed two kinds of gridless sparse methods for direction of arrival estimation in the presence of multiple snapshots that exploit joint sparsity among the snapshots and completely resolve grid mismatches of previous grid-based sparse methods. One is termed as gridless SPICE (GL-SPICE, GLS) that is a gridless version of the covariance-based SPICE method; the other uses deterministic atomic norm optimization which extends the recent super-resolution and continuous compressed sensing framework from the single- to multi-snapshot case. In this paper, we unify these two techniques by interpreting theoretically GLS as atomic norm methods in various scenarios and under different assumptions of noise. The new interpretations of GLS enable us to provide theoretical guarantees of GLS in the case of finite snapshots. Besides, they are applied to show that GLS is robust to source correlations though it was derived under the assumption of uncorrelated sources. Numerical results are also provided to validate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.N. Bhaskar, G. Tang, B. Recht, Atomic norm denoising with applications to line spectral estimation. IEEE Trans. Signal Process. 61(23), 5987–5999 (2013)

    Article  MathSciNet  Google Scholar 

  2. E.J. Candès, C. Fernandez-Granda, Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Duval, G. Peyré, Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15(5), 1315–1355 (2015)

  4. J. Fang, J. Li, Y. Shen, H. Li, S. Li, Super-resolution compressed sensing: an iterative reweighted algorithm for joint parameter learning and sparse signal recovery. IEEE Signal Process. Lett. 21(6), 761–765 (2014)

    Article  Google Scholar 

  5. L. Hu, Z. Shi, J. Zhou, Q. Fu, Compressed sensing of complex sinusoids: an approach based on dictionary refinement. IEEE Trans. Signal Process. 60(7), 3809–3822 (2012)

    Article  MathSciNet  Google Scholar 

  6. M. Hyder, K. Mahata, Direction-of-arrival estimation using a mixed \(\ell _{2,0}\) norm approximation. IEEE Trans. Signal Process. 58(9), 4646–4655 (2010)

    Article  MathSciNet  Google Scholar 

  7. H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  8. Y. Li, Y. Chi, Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. IEEE Trans. Signal Process. 64(5), 1257–1269 (2016)

    Article  MathSciNet  Google Scholar 

  9. D.A. Linebarger, I.H. Sudborough, I.G. Tollis, Difference bases and sparse sensor arrays. IEEE Trans. Inf. Theory 39(2), 716–721 (1993)

    Article  Google Scholar 

  10. D. Malioutov, M. Cetin, A. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  Google Scholar 

  11. P. Pal, P. Vaidyanathan, A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising. IEEE Signal Process. Lett. 21(6), 737–741 (2014)

    Article  Google Scholar 

  12. P. Stoica, P. Babu, Sparse estimation of spectral lines: grid selection problems and their solutions. IEEE Trans. Signal Process. 60(2), 962–967 (2012)

    Article  MathSciNet  Google Scholar 

  13. P. Stoica, P. Babu, J. Li, SPICE: a sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process. 59(2), 629–638 (2011)

    Article  MathSciNet  Google Scholar 

  14. P. Stoica, R.L. Moses, Spectral Analysis of Signals (Pearson/Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  15. P. Stoica, D. Zachariah, J. Li, Weighted SPICE: a unifying approach for hyperparameter-free sparse estimation. Digit. Signal Proc. 33, 1–12 (2014)

    Article  Google Scholar 

  16. Z. Tan, Y.C. Eldar, A. Nehorai, Direction of arrival estimation using co-prime arrays: a super resolution viewpoint. IEEE Trans. Signal Process. 62(21), 5565–5576 (2014)

    Article  MathSciNet  Google Scholar 

  17. G. Tang, B.N. Bhaskar, P. Shah, B. Recht, Compressed sensing off the grid. IEEE Trans. Inf. Theory 59(11), 7465–7490 (2013)

    Article  MathSciNet  Google Scholar 

  18. K.-C. Toh, M.J. Todd, R.H. Tütüncü, SDPT3: a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Z. Yang, L. Xie, On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Trans. Signal Process. 63(12), 3139–3153 (2015)

    Article  MathSciNet  Google Scholar 

  20. Z. Yang, L. Xie, Enhancing sparsity and resolution via reweighted atomic norm minimization. IEEE Trans. Signal Process. 64(4), 995–1006 (2016)

    Article  MathSciNet  Google Scholar 

  21. Z. Yang, L. Xie, Exact joint sparse frequency recovery via optimization methods. IEEE Trans. Signal Process. 64(19), 5145–5157 (2016)

    Article  MathSciNet  Google Scholar 

  22. Z. Yang, L. Xie, C. Zhang, Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process. 61(1), 38–43 (2013)

    Article  MathSciNet  Google Scholar 

  23. Z. Yang, L. Xie, C. Zhang, A discretization-free sparse and parametric approach for linear array signal processing. IEEE Trans. Signal Process. 62(19), 4959–4973 (2014)

    Article  MathSciNet  Google Scholar 

  24. Z. Yang, L. Xie, On gridless sparse methods for multi-snapshot DOA estimation, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), pp. 3236–3240

  25. Y. Zhang, Z. Ye, X. Xu, N. Hu, Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning. Sig. Process. 98, 197–201 (2014)

    Article  Google Scholar 

  26. Y.X. Zou, B. Li, C.H. Ritz, Multi-source DOA estimation using an acoustic vector sensor array under a spatial sparse representation framework. Circuits Syst. Signal Process. 35(3), 993–1020 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai Yang.

Additional information

The research of this project was supported by the Ministry of Education, Republic of Singapore, under Grant AcRF TIER 1 RG78/15, the National Natural Science Foundation of China, under Grant 61603187, and the Natural Science Foundation of Jiangsu Province, China, under Grant BK20160845.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xie, L. On Gridless Sparse Methods for Multi-snapshot Direction of Arrival Estimation. Circuits Syst Signal Process 36, 3370–3384 (2017). https://doi.org/10.1007/s00034-016-0462-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0462-9

Keywords

Navigation