Skip to main content
Log in

Implementation of Fingerprint Based Biometric System Using Optimized 5/3 DWT Architecture and Modified CORDIC Based FFT

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The real-time biometric systems are used to authenticate persons for wide range of security applications. In this paper, we propose implementation of fingerprint-based biometric system using Optimized 5/3 DWT architecture and Modified CORDIC-based Fast Fourier Transform (FFT). The Optimized 2D-DWT architecture is designed using Optimized 1D-DWT architectures, Memory Units and novel Controller Unit which is used to scan rows and columns of an image. The database fingerprint image is applied to the proposed Optimized 2D-DWT architecture to obtain four sub-bands of LL, LH, HL and HH. The efficient architecture of FFT is designed by using Modified CORDIC processor which generates twiddle factor angles of range \(0^{\circ }\)\(360^{\circ }\) using Pre-processing Unit and Comparator Block. Further, the LL sub-band coefficients are applied to the Modified CORDIC based FFT to generate final fingerprint features. The test fingerprint features are obtained by repeating the same procedure and are used to match the database fingerprint image features using Euclidean Distance. The performance parameters of proposed architecture in terms of area utilization, speed and accuracy is compared with existing architecture to validate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Acharya, C. Chakrabarti, A survey on lifting-based discrete wavelet transform architectures. J. VLSI Signal Process. Syst. Signal Image Video Technol. 42(3), 321–339 (2006). doi:10.1007/s11266-006-4191-3

    Article  MATH  Google Scholar 

  2. A. Alilla, M. Faccio, T. Vali, G. Marotta, L. DeSantis, A new low cost fingerprint recognition system on FPGA, in IEEE International Conference on Industrial Technology, 2013. ICIT 2013 (Feb. 2013), pp. 988–993, South Africa. doi:10.1109/ICIT.2013.6505806

  3. K. Andra, C. Chakrabarti, T. Acharya, A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Signal Process. 50(4), 966–977 (2002). doi:10.1109/78.992147

    Article  Google Scholar 

  4. M.E. Angelopoulou, K. Masselos, P.Y.K. Cheung, Y. Andreopouos, Implementation and comparison of the 5/3 lifting 2D discrete wavelet transform computation schedules on FPGAs. J. Signal Process. Syst. 51(1), 3–21 (2008). doi:10.1007/s11265-007-0139-5

    Article  Google Scholar 

  5. S. Barua, J.E. Carletta, K.A. Kotteri, A.E. Bell, An efficient architecture for lifting-based two-dimensional discrete wavelet transform. Integr. VLSI J. 38(3), 341–352 (2005). doi:10.1016/j.vlsi.2004.07.010

    Article  Google Scholar 

  6. J. Becker, M. Hubner, G. Hettich, R. Constaple, J. Eisenmam, J. Luka, Dynamic and partial FPGA exploitation. Proc. IEEE 95(2), 438–452 (2007). doi:10.1109/JPROC.2006.888404

    Article  Google Scholar 

  7. S.S. Bhairannawar, S. Sarkar, K.B. Raja, K.R. Venugopal, An efficient VLSI architecture for fingerprint recognition using O2D-DWT architecture and modified CORDIC-FFT, in IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, 2015, SPICES 2015 (Feb. 2015), pp. 1–5, India. doi:10.1109/SPICES.2015.7091397

  8. R.M. Bolle, J. Connell, S. Pankanti, N.K. Ratha, A.W. Senior, Guide to Biometric (Springer Professional Computing Series, New York, 2004)

    Book  Google Scholar 

  9. S. Chaven, P. Mundada, D. Pal, Fingerprint authentication using gabor filter based matching algorithm, in IEEE International Conference on Technologies for Sustainable Developments, 2015, ICTSD 2015 (Feb. 2015), pp. 1–6, India. doi:10.1109/ICTSD.2015.7095910

  10. R.J. Colom-Palero, R. Gadea-Girones, F.J. Ballester-Merelo, M. Martinez-Peiro, Flexible architecture for the implementation of the two-dimensional discrete wavelet transform (2D-DWT) oriented to FPGA devices. J. Microprocess. Microsyst. 28(9), 509–518 (2004). doi:10.1016/j.micpro.2004.05.003

    Article  Google Scholar 

  11. A.D. Darji, S.S. Kushwah, S.N. Merchant, A.N. Chandorkar, High performance hardware architecture for multi-level lifting based discrete wavelet transform. EURASIP J. Image Video Process. 2014(1), 1–19 (2014). doi:10.1186/1687-5281-2014-47

    Article  Google Scholar 

  12. J. Duprat, J.M. Muller, The CORDIC algorithm: new results for fast VLSI implementation. IEEE Trans. Comput. 42(2), 168–177 (1993). doi:10.1109/12.204786

    Article  Google Scholar 

  13. C.-P. Fan, G.-A. Su, Pruning fast Fourier transform algorithm design using group-based method. J. Signal Process. 87(11), 2781–2798 (2007). doi:10.1016/j.sigpro.2007.05.012

    Article  MATH  Google Scholar 

  14. F. Fons, M. Fons, E. Canto, M. Lopez, Flexible hardware for fingerprint image processing, in Proceeding of the Ph.D research in microelectronics and electronics conference, 2007, PRIME 2007 (July 2007), pp. 169–172, France. doi:10.1109/RME.2007.4401839

  15. M. Fons, F. Fons, E. Canto, M. Lopez, FPGA based personal authentication using fingerprints. J. Signal Process. Syst. 66(2), 153–189 (2012). doi:10.1007/s11265-011-0629-3

    Article  Google Scholar 

  16. M. Fons, F. Fons, E. Canto, Fingerprint image processing acceleration through run-time reconfigurable hardware. IEEE Trans. Circuits Syst. II Express Briefs 57(12), 991–995 (2010). doi:10.1109/TCSII.2010.2087970

    Article  Google Scholar 

  17. J.P. George, S.K. Abhilash, K.B. Raja, Transform domain fingerprint identification based on DTCWT. Int. J. Adv. Comput. Sci. Appl. 3(1), 190–195 (2012). doi:10.14569/IJACSA.2012.030130

    Google Scholar 

  18. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Pearson Education, Upper Saddle River, 2008)

    Google Scholar 

  19. M.H. Hayes, Digital Signal Processing, 2nd edn. (McGraw-Hill, New York, 2011)

    Google Scholar 

  20. I.I. Hirschman, Infinite Series, 1st edn. (Dover Publication, New York, 2014). ISBN 978-0-486-78975-0

    Google Scholar 

  21. D.V. Jadhav, P.K. Ajmera, Multi resolution feature based subspace analysis for fingerprint recognition. Int. J. Comput. Appl. 1(13), 1–4 (2010). doi:10.5120/291-455

    Google Scholar 

  22. M. Kuhlmann, K.K. Parhi, P-CORDIC: a precomputation based rotation CORDIC algorithm. EURASIP J. Adv. Signal Process. 2002(9), 936–943 (2002). doi:10.1155/S1110865702205028

    Article  MATH  Google Scholar 

  23. Y.-K. Lai, L.-F. Chen, Y.-C. Shih, A high-performance and memory-efficient VLSI architecture with parallel scanning method for 2-D lifting-based discrete wavelet transform. IEEE Trans. Consum. Electron. 55(2), 400–407 (2009). doi:10.1109/TCE.2009.5174400

    Article  Google Scholar 

  24. X. Lan, N. Zheng, Y. Liu, Low-power and high-speed VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Consum. Electron. 51(2), 379–385 (2005). doi:10.1109/TCE.2005.1467975

    Article  Google Scholar 

  25. H. Liao, M.K. Mandal, B.F. Cockburn, Efficient architectures for 1-D and 2-D lifting-based wavelet transforms. IEEE Trans. Signal Process. 52(5), 1315–1326 (2004). doi:10.1109/TSP.2004.826175

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Liu, L. Fan, T. Ma, A modified CORDIC FPGA implementation for wave generation. J. Circuits Syst. Signal Process. 33(1), 321–329 (2014). doi:10.1007/s00034-013-9638-8

    Article  Google Scholar 

  27. P.-C. Lo, Y.-Y. Lee, Real time implementation of split-radix FFT—an algorithm to efficiently construct local butterfly modules. J. Signal Process. 71(3), 291–299 (1998). doi:10.1016/S0165-1684(98)00152-2

    Article  MATH  Google Scholar 

  28. D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar, Handbook of Fingerprint Recognition, 2nd edn. (Springer, London, 2009). ISBN 978-1-84882-254-2

    Book  MATH  Google Scholar 

  29. M.C. Martinez-Rodriguez, R. Arjona, P. Brox, I. Baturone, Dedicated hardware IP module for fingerprint recognition, in IEEE International Symposium on Consumer Electronics, 2015, ISCE 2015 (June 2015), pp. 1–2, Spain. doi:10.1109/ISCE.2015.7177829

  30. P.K. Meher, J. Valls, T.-B. Juang, K. Sridharan, K. Maharatna, 50 Years of CORDIC: algorithms, architectures and applications. IEEE Trans. Circuits Syst. I Regul. Pap. 56(9), 1893–1907 (2009). doi:10.1109/TCSI.2009.2025803

    Article  MathSciNet  Google Scholar 

  31. S.B. Nikam, S. Agarwal, Fingerprint anti-spoofing using Ridgelet transform, in 2nd IEEE International Conference on Biometrics: Theory, Applications Systems, 2008, BTAS 2008 (Sept. 2008), pp. 1–6, Virginia. doi:10.1109/BTAS.2008.4699347

  32. A.A. Paulino, J. Feng, A.K. Jain, Latent fingerprint matching using descriptor-based hough transform. IEEE Trans. Inf. Forensics Secur. 8(1), 31–45 (2013). doi:10.1109/TIFS.2012.2223678

    Article  Google Scholar 

  33. J.G. Proakis, D.G. Manolakis, Digital Signal Processing Principles, Algorithms and Applications, 4th edn. (Pearson Education Limited (Verlag), USA, 2014). ISBN: 978-1-292-02573-5

  34. T.R. Reddy, R. Srikanth, Hardware implementation of DWT for image compression using SPIHT algorithm. Int. J. Comput. Trends Technol. 2(2), 58–62 (2011)

    Google Scholar 

  35. M.M. Roja, S. Sawarkar, Fingerprint verification system—a fusion approach, in IJCA Proceedings on International Conference in Computational Intelligence, 2012. ICCIA 2012 (March 2012), pp. 17–20

  36. N. Sidhu, R.S. Uppal, K. Kaur, R.S. Kaler, Analysis of wavelet LeGall 5/3 transform in image watermarking. Int. J. Recent Trends Eng. Technol. ACEEE 2(4), 224–227 (2009)

  37. J.O. Smith III, Mathematics of the DFT with Audio Applications, 2nd edn. (W3K Publication, USA, 2008). ISBN: 978-0974560748

  38. K.B. Sowmya, S. Sonali, M. Nagabhushanam, Optimized DA based DWT-IDWT for image compression. Int. J. Concept. Electr. Electron. Eng. 1(1), 67–71 (2013)

    Google Scholar 

  39. R. Wang, B. Bhanu, Predicting fingerprint biometrics performance from a small gallery. Pattern Recogn. Lett. 28(1), 40–48 (2007). doi:10.1016/j.patrec.2006.06.015

    Article  Google Scholar 

  40. S. Wang, V. Piuri, E.E. Swartzlander Jr., A unified View of CORDIC processor design, in Proceedings of the 39th IEEE midwest symposium on circuits and systems, 1996, MWSCAS 1996 (Aug. 1996), pp. 852–855, USA. doi:10.1109/MWSCAS.1996.588050

  41. N.H.E. Weste, K. Eshragian, C.M.O.S.V.L.S.I. Design, A Systems Perspective, 2nd edn. (Addison-Wesley, Boston, 1999)

    Google Scholar 

  42. P.-C. Wu, L.-G. Chen, An efficient architecture for two-dimensional discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 11(4), 536–545 (2001). doi:10.1109/76.915359

    Article  Google Scholar 

  43. Xilinx CORDIC IP Core Datasheet. https://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf

  44. Xilinx SRAM Datasheet. https://www.xilinx.com/support/documentation/application_notes/xapp853.pdf

  45. Xilinx Virtrex-5 Family Datasheet. http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf

  46. A. Yasodai, A.V. Ramprasad, A new memory based radix-4 CORDIC processor for FFT operation. IOSR J. VLSI Signal Process. 2(5), 9–16 (2013). doi:10.9790/4200-0250916

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satish S. Bhairannawar or Sayantam Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhairannawar, S.S., Sarkar, S., Raja, K.B. et al. Implementation of Fingerprint Based Biometric System Using Optimized 5/3 DWT Architecture and Modified CORDIC Based FFT. Circuits Syst Signal Process 37, 342–366 (2018). https://doi.org/10.1007/s00034-017-0555-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0555-0

Keywords

Navigation