Skip to main content
Log in

Huber-Based Adaptive Unscented Kalman Filter with Non-Gaussian Measurement Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper concerns the application of Huber-based robust unscented Kalman filter (HRUKF) in nonlinear system with non-Gaussian measurement noise. The tuning factor \(\gamma \) is key factor in determining the form of Huber cost function. Traditionally, \(\gamma \) is mainly determined by experience and/or experiments. It is hard to acquire optimal parameter or achieve an optimal filtering. To solve this problem, the influence of tuning factor \(\gamma \) on the performance of HRUKF is analyzed, and then, an adaptive strategy based on projection statistics algorithm for this parameter is proposed to improve filtering performance under the conditions that the measurement noise is contaminated by heavier tails and/or outliers. Simulation results for the problem of Reentry Vehicle Tracking demonstrate the superiority of the proposed method over the traditional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Auger, M. Hilairet, J.M. Guerrero, E. Monmasson, T. Orlowska-Kowalska, S. Katsura, Industrial applications of the Kalman filter: a review. IEEE Trans. Ind. Electron. 60(12), 5458–5471 (2013)

    Article  Google Scholar 

  2. A. Aubry, A. De Maio, Y. Huang, M. Piezzo, Robust design of radar doppler filters. IEEE Trans. Signal Process. 64(22), 5848–5860 (2016)

    Article  MathSciNet  Google Scholar 

  3. G. Chang, Loosely coupled INS/GPS Integration with constant lever arm using marginal unscented Kalman filter. J. Navig. 67(3), 419–436 (2014)

    Article  Google Scholar 

  4. G. Chang, Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion. J. Geod. 88(4), 391–401 (2014)

    Article  Google Scholar 

  5. G. Chang, M. Liu, M-estimator-based robust Kalman filter for systems with process modeling errors and rank deficient measurement models. Nonlinear Dyn. 80(3), 1431–1449 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Chang, Y. Wang, Q. Wang, Accuracy improvement by implementing sequential measurement update in robust Kalman filter. Acta Geod. Geophys. 51(3), 421–433 (2016)

    Article  MathSciNet  Google Scholar 

  7. L. Chang, B. Hu, G. Chang, A. Li, Huber-based novel robust unscented Kalman filter. IET Sci. Meas. Technol. 6(6), 502–509 (2012)

    Article  Google Scholar 

  8. L. Chang, B. Hu, A. Li, F. Qin, Transformed unscented Kalman filter. IEEE Trans. Autom. Control 58(1), 252–257 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Chang, K. Li, B. Hu, Huber’s M-estimation-based process uncertainty robust filter for integrated INS/GPS. IEEE Sens. J. 15(6), 3367–3374 (2015)

    Article  Google Scholar 

  10. J. Carpenter, P. Clifford, P. Fearnhead, Improved particle filter for nonlinear problems. IEE Proc. Radar Sonar Navig. 146(1), 2–7 (1999)

    Article  Google Scholar 

  11. Y. Cui, R. Kavasseri, Particle filter-based dual estimation for synchronous generators. IET Gener. Trans. Distrib. 7(11), 1701–1708 (2017)

    Article  Google Scholar 

  12. F. El-Hawary, Y. Jing, Robust regression-based EKF for tracking underwater targets. IEEE J. Ocean. Eng. 20(1), 31–41 (1995)

    Article  Google Scholar 

  13. N.J. Gordon, D.J. Salmond, A.F.M. Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, in IEE Proceedings F (Radar and Signal Processing), vol 140, pp. 107–113. (IET Digital Library, 1993)

  14. M.A. Gandhi, L. Mili, Robust Kalman filter based on a generalized maximum-likelihood-type estimator. IEEE Trans. Signal Process. 58(5), 2509–2520 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. P.J. Huber, Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. P.J. Huber, Robust Statistics (Wiley, Hoboken, 2005)

    Google Scholar 

  17. P.J. Huber, F.M. Ronchetti, Robust Statistics (Wiley, Hoboken, 2009). https://doi.org/10.1002/9780470434697

    Book  MATH  Google Scholar 

  18. J. Hartikainen, A. Solin, S. Särkkä, Optimal Filtering with Kalman Filters and Smoothers, vol. 16 (Department of Biomedica Engineering and Computational Sciences, Aalto University School of Science, Greater Helsinki, 2011)

    Google Scholar 

  19. Y. Hasegawa, T. Shimayoshi, A. Amano, T. Matsuda, Application of the Kalman filter for faster strong coupling of cardiovascular simulations. IEEE J. Biomed. Health Inform. 20(4), 1100–1106 (2016)

    Article  Google Scholar 

  20. Y. Huang, Y. Zhang, N. Li, Z. Shi, Design of Gaussian approximate filter and smoother for nonlinear systems with correlated noises at one epoch apart. Circuits Syst. Signal Process. 35(11), 3981–4008 (2016)

    Article  MATH  Google Scholar 

  21. Y. Huang, Y. Zhang, N. Li, L. Zhao, Design of sigma-point Kalman filter with recursive updated measurement. Circuits Syst. Signal Process. 35(5), 1767–1782 (2016)

    Article  MATH  Google Scholar 

  22. Y. Huang, Y. Zhang, N. Li, J. Chambers, A robust Gaussian approximate fixed-interval smoother for nonlinear systems with heavy-tailed process and measurement noises. IEEE Signal Process. Lett. 23(4), 468–472 (2016)

    Article  Google Scholar 

  23. Y. Huang, Y. Zhang, Robust student’s t based stochastic Cubature Filter for nonlinear systems with heavy-tailed process and measurement noises, in IEEE Access (2017)

  24. Y. Huang, Y. Zhang, Z. Wu, N. Li, J. Chambers, A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices. IEEE Trans. Autom. Control (2017). https://doi.org/10.1109/TAC.2017.2730480

    MATH  Google Scholar 

  25. Y. Huang, Y. Zhang, Z. Wu, N. Li, J. Chambers, A novel robust Student’s t based Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1545–1554 (2017)

    Article  Google Scholar 

  26. S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  27. C.D. Karlgaard, H. Schaub, Adaptive Huber-based filtering using projection statistics: application to spacecraft attitude estimation, in AIAA Guidance, Navigation, and Control Conference (2008)

  28. C.D. Karlgaard, Robust adaptive estimation for autonomous rendezvous in elliptical orbit. Virginia Tech., 2010

  29. C.D. Karlgaard, H. Schaub, Adaptive nonlinear Huber-based navigation for rendezvous in elliptical orbit. J. Guid. Dyn. 34(2), 388 (2011)

    Article  Google Scholar 

  30. Y. Li, M. Coates, Particle filtering with invertible particle flow. IEEE Trans. Signal Process. 65(15), 4102–4116 (2016)

    Article  MathSciNet  Google Scholar 

  31. J. Liu, B. Cai, J. Wang, Cooperative localization of connected vehicles: integrating GNSS with DSRC using a robust Cubature Kalman filter. IEEE Trans. Intell. Transp. Syst. 8(18), 2111–2125 (2016)

    Google Scholar 

  32. W. Li, S. Sun, Y. Jia, J. Du, Robust unscented Kalman filter with adaptation of process and measurement noise covariances. Digit. Signal Proc. 48, 93–103 (2016)

    Article  MathSciNet  Google Scholar 

  33. L. Mili, M.G. Cheniae, N.S. Vichare, P.J. Rousseeuw, Robust state estimation based on projection statistics [of power systems]. IEEE Trans. Power Syst. 11(2), 1118–1127 (1996)

    Article  Google Scholar 

  34. D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  35. S.F. Schmidt, Kalman filter: its recognition and development for aerospace applications. J. Guid. Control 4(1), 4–7 (1981)

    Article  Google Scholar 

  36. Y. Yang, H. He, G. Xu, Adaptively robust filtering for kinematic geodetic positioning. J. Geod. 75(2), 109–116 (2001)

    Article  MATH  Google Scholar 

  37. L. Zanni, J.Y. Le Boudec, R. Cherkaoui, M. Paolone, A prediction-error covariance estimator for adaptive Kalman filtering in step-varying processes: application to power-system state estimation. IEEE Trans. Control Syst. Technol. 25(5), 1683–1697 (2017)

    Article  Google Scholar 

  38. J. Zhao, L. Mili, robust power system dynamic state estimator with Non-Gaussian measurement noise: part I-theory. arXiv:1703.04790 (2017)

  39. J. Zhao, L. Mili, Robust power system dynamic state estimator with Non-Gaussian measurement noise: part II-implementation and results. arXiv:1703.05991 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangning Xu.

Additional information

This work was supported by the National Natural Science Foundation of China Nos. 41574069, 41404002 and 61503404, the National Key Scientific Instrument and Equipment Project No. 2011YQ12004502, the Key R&D Program Nos. 2016YFB0501700 and 2016YFB0501701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Chang, L., Xu, J. et al. Huber-Based Adaptive Unscented Kalman Filter with Non-Gaussian Measurement Noise. Circuits Syst Signal Process 37, 3842–3861 (2018). https://doi.org/10.1007/s00034-017-0736-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0736-x

Keywords

Navigation