Skip to main content
Log in

Locally Optimized Adaptive Directional Time–Frequency Distributions

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses the problem of estimating the parameters of adaptive directional time–frequency distributions (ADTFDs). ADTFDs locally optimize the direction of the smoothing kernel on the basis of directional Gaussian or double derivative directional Gaussian filter. Conventionally, the parameters of these techniques have to be tuned manually for each particular signal. Global optimization of the parameters fails to provide the desired results when the signal encompasses close or short-duration components. We propose a two-stage algorithm to resolve this issue. As part of the first stage, the length of the smoothing kernel is optimized globally. In the second stage, the parameters which control the shape of the selected smoothing window are optimized, locally. It is shown that the multistage algorithm can result in a time–frequency distribution that has both high resolution for close components and good concentration of signal energy for short-duration signal components. Experimental findings reveal the superiority of the proposed technique over the existing methods in the case of complete signals and its benefits in the case of signals with missing samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Ali, N.A. Khan, M. Haneef, X. Luo, Blind source separation schemes for mono-sensor and multi-sensor systems with application to signal detection. Circuits Syst. Signal Process. 36(11), 4615–4636 (2017). https://doi.org/10.1007/s00034-017-0533-6

    Article  MathSciNet  Google Scholar 

  2. M.G. Amin, B. Jokanovic, Y.D. Zhang, F. Ahmad, A sparsity-perspective to quadratic time–frequency distributions. Digit. Signal Process. 46, 175–190 (2015). https://doi.org/10.1016/j.dsp.2015.06.011

    Article  MathSciNet  Google Scholar 

  3. F. Auger, P. Flandrin, Improving the readability of time–frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 43(5), 1068–1089 (1995). https://doi.org/10.1109/78.382394

    Article  Google Scholar 

  4. M.A. Awal, B. Boashash, An automatic fast optimization of quadratic time-frequency distribution using the hybrid genetic algorithm. Signal Process. 131, 134–142 (2017). https://doi.org/10.1016/j.sigpro.2016.08.017

    Article  Google Scholar 

  5. M.A. Awal, S. Ouelha, S. Dong, B. Boashash, A robust high-resolution time–frequency representation based on the local optimization of the short-time fractional Fourier transform. Digit. Signal Process. 70(Supplement C), 125–144 (2017). https://doi.org/10.1016/j.dsp.2017.07.022

    Article  Google Scholar 

  6. R.G. Baraniuk, D.L. Jones, Signal-dependent time–frequency analysis using a radially Gaussian kernel. Signal Process. 32(3), 263–284 (1993). https://doi.org/10.1016/0165-1684(93)90001-Q

    Article  MATH  Google Scholar 

  7. R.G. Baraniuk, P. Flandrin, A.J.E.M. Janssen, O.J.J. Michel, Measuring time–frequency information content using the Renyi entropies. IEEE Trans. Inf. Theory 47(4), 1391–1409 (2001). https://doi.org/10.1109/18.923723

    Article  MATH  Google Scholar 

  8. M. Bastiaans, T. Alieva, L. Stanković, On rotated time–frequency kernels. IEEE Signal Process. Lett. 9(11), 378–381 (2002). https://doi.org/10.1109/LSP.2002.805118

    Article  Google Scholar 

  9. B. Boashash, T. Ben-Jabeur, Design of a high-resolution separable-kernel quadratic TFD for improving newborn health outcomes using fetal movement detection. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), pp. 354–359 (2012). https://doi.org/10.1109/ISSPA.2012.6310574

  10. B. Boashash, S. Ouelha, Designing high-resolution time–frequency and time-scale distributions for the analysis and classification of non-stationary signals: a tutorial review with a comparison of features performance. Digit. Signal Process. (2017). https://doi.org/10.1016/j.dsp.2017.07.015

  11. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc. IEEE 80(4), 520–538 (1992). https://doi.org/10.1109/5.135376

    Article  Google Scholar 

  12. B. Boashash, Time–Frequency Signal Analysis and Processing, 2nd edn. (Academic Press, Oxford, 2015). https://doi.org/10.1016/B978-0-12-398499-9.00003-0

    Google Scholar 

  13. B. Boashash, S. Ouelha, An improved design of high-resolution quadratic time–frequency distributions for the analysis of non-stationary multicomponent signals using directional compact kernels. IEEE Trans. Signal Process. PP(99), 1–1 (2017). https://doi.org/10.1109/TSP.2017.2669899

    Google Scholar 

  14. B. Boashash, N.A. Khan, T. Ben-Jabeur, Time–frequency features for pattern recognition using high-resolution TFDS. Digit. Signal Process. 40(C), 1–30 (2015)

    Article  MathSciNet  Google Scholar 

  15. M. Brajovi, V. Popovi-Bugarin, I. Djurovi, S. Djukanovi, Post-processing of time–frequency representations in instantaneous frequency estimation based on ant colony optimization. Signal Process. 138(Supplement C), 195–210 (2017). https://doi.org/10.1016/j.sigpro.2017.03.022

    Article  Google Scholar 

  16. G. Chen, J. Chen, G. Dong, H. Jiang, An adaptive non-parametric short-time Fourier transform: application to echolocation. Appl. Acoust. 87, 131–141 (2015). https://doi.org/10.1016/j.apacoust.2014.06.018

    Article  Google Scholar 

  17. P. Flandrin, P. Borgnat, Time–frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process. 58(6), 2974–2982 (2010). https://doi.org/10.1109/TSP.2010.2044839

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Hlawatsch, T.G. Manickam, R.L. Urbanke, W. Jones, Smoothed pseudo-Wigner distribution, Choi–Williams distribution, and cone-kernel representation: ambiguity-domain analysis and experimental comparison. Signal Process. 43(2), 149–168 (1995). https://doi.org/10.1016/0165-1684(94)00150-X

    Article  MATH  Google Scholar 

  19. T.K. Hon, A. Georgakis, Enhancing the resolution of the spectrogram based on a simple adaptation procedure. IEEE Trans. Signal Process. 60(10), 5566–5571 (2012). https://doi.org/10.1109/TSP.2012.2208637

    Article  MathSciNet  Google Scholar 

  20. D. Jones, R. Baraniuk, An adaptive optimal-kernel time–frequency representation. IEEE Trans. Signal Process. 43(10), 2361–2371 (1995)

    Article  Google Scholar 

  21. D.L. Jones, T.W. Parks, A high resolution data-adaptive time–frequency representation. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2127–2135 (1990). https://doi.org/10.1109/29.61539

    Article  Google Scholar 

  22. N.A. Khan, S. Ali, Sparsity-aware adaptive directional time–frequency distribution for source localization. Circuits Syst. Signal Process. (2017). https://doi.org/10.1007/s00034-017-0603-9

  23. N.A. Khan, B. Boashash, Multi-component instantaneous frequency estimation using locally adaptive directional time frequency distributions. Int. J. Adapt. Control Signal Process. (2015). https://doi.org/10.1002/acs.2583

  24. N. Khan, B. Boashash, Instantaneous frequency estimation of multicomponent nonstationary signals using multiview time–frequency distributions based on the adaptive fractional spectrogram. IEEE Signal Process. Lett. 20(2), 157–160 (2013)

    Article  Google Scholar 

  25. N.A. Khan, M. Sandsten, Time–frequency image enhancement based on interference suppression in Wignerville distribution. Signal Process. 127, 80–85 (2016). https://doi.org/10.1016/j.sigpro.2016.02.027

    Article  Google Scholar 

  26. N. Khan, F. Baig, J.N. Syed, N. Ur Rehman, S. Sharma, Analysis of power quality signals using an adaptive time–frequency distribution. Energies 9, 933 (2016)

    Article  Google Scholar 

  27. J. Lerga, N. Saulig, V. Mozeti, Algorithm based on the short-term Renyi entropy and IF estimation for noisy EEG signals analysis. Comput. Biol. Med. 80(Supplement C), 1–13 (2017)

    Article  Google Scholar 

  28. Z. Liang, X. Duan, X. Li, Entropy Measures in Neural Signals (Springer, Singapore, 2016), pp. 125–166

    Google Scholar 

  29. D. Malnar, V. Sucic, J. O’Toole, Automatic quality assessment and optimisation of quadratic time–frequency representations. Electron. Lett. 51(13), 1029–1031 (2015)

    Article  Google Scholar 

  30. C. Mateo, J.A. Talavera, Short-time Fourier transform with the window size fixed in the frequency domain. Digit. Signal Process. (2017). https://doi.org/10.1016/j.dsp.2017.11.003

    Google Scholar 

  31. W. Mecklenbrauker, F. Hlawatsch, The Wigner distribution: theory and applications in signal processing (Elsevier, Amesterdam, 1997)

    MATH  Google Scholar 

  32. M. Mohammadi, A.A. Pouyan, N.A. Khan, A highly adaptive directional time–frequency distribution. SIViP 10(7), 1369–1376 (2016). https://doi.org/10.1007/s11760-016-0901-x

    Article  Google Scholar 

  33. M. Mohammadi, N. AliKhan, A.A. Pouyan, Automatic seizure detection using a highly adaptive directional time–frequency distribution. Multidimens. Syst. Signal Process. (2017). https://doi.org/10.1007/s11045-017-0522-8

    Google Scholar 

  34. S. Ouelha, S. Touati, B. Boashash, An efficient inverse short-time Fourier transform algorithm for improved signal reconstruction by time–frequency synthesis: optimality and computational issues. Digit. Signal Process. 65(Supplement C), 81–93 (2017). https://doi.org/10.1016/j.dsp.2017.03.002

    Article  MathSciNet  Google Scholar 

  35. L. Rankine, M. Mesbah, B. Boashash, IF estimation for multicomponent signals using image processing techniques in the time–frequency domain. Sig. Process. 87(6), 1234–1250 (2007). https://doi.org/10.1016/j.sigpro.2006.10.013

    Article  MATH  Google Scholar 

  36. T.H. Sang, W.J. Williams, Renyi information and signal-dependent optimal kernel design. In: 1995 International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 997–1000 (1995). https://doi.org/10.1109/ICASSP.1995.480344

  37. N. Saulig, I. Orovi, V. Sucic, Optimization of quadratic time–frequency distributions using the local Renyi entropy information. Sig. Process. 129, 17–24 (2016). https://doi.org/10.1016/j.sigpro.2016.05.025

    Article  Google Scholar 

  38. E. Sejdi, I. Djurovi, J. Jiang, Time-frequency feature representation using energy concentration: an overview of recent advances. Digit. Signal Process. 19(1), 153–183 (2009). https://doi.org/10.1016/j.dsp.2007.12.004

    Article  Google Scholar 

  39. E. Sejdi, I. Orovi, S. Stankovi, Compressive sensing meets time–frequency: an overview of recent advances in time–frequency processing of sparse signals. Digit. Signal Process. (2017). https://doi.org/10.1016/j.dsp.2017.07.016

    Google Scholar 

  40. A. Serbes, L. Durak, Optimum signal and image recovery by the method of alternating projections in fractional Fourier domains. Commun. Nonlinear Sci. Numer. Simul. 15(3), 675–689 (2010). https://doi.org/10.1016/j.cnsns.2009.05.013

    Article  MathSciNet  MATH  Google Scholar 

  41. L. Stanković, A method for time–frequency analysis. IEEE Trans. Signal Process. 42(1), 225–229 (1994). https://doi.org/10.1109/78.258146

    Article  Google Scholar 

  42. L. Stanković, A measure of some time–frequency distributions concentration. Signal Process. 81(3), 621–631 (2001). (special section on digital signal processing for multimedia)

    Article  MATH  Google Scholar 

  43. I. Volaric, V. Sucic, S. Stankovic, A data driven compressive sensing approach for time–frequency signal enhancement. Signal Process. 141(1), 229–239 (2017). https://doi.org/10.1016/j.sigpro.2017.06.013

    Article  Google Scholar 

  44. W.J. Williams, T. Sang, Adaptive RID kernels which minimize time–frequency uncertainty. In: Proceedings of IEEE-SP International Symposium on Time–Frequency and Time-Scale Analysis, pp. 96–99 (1994). https://doi.org/10.1109/TFSA.1994.467355

  45. J. Zhong, Y. Huang, Time–frequency representation based on an adaptive short-time Fourier transform. IEEE Trans. Signal Process. 58(10), 5118–5128 (2010). https://doi.org/10.1109/TSP.2010.2053028

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Zhu, X. Zhang, Y. Qi, An adaptive STFT using energy concentration optimization. In: 2015 10th International Conference on Information, Communications and Signal Processing (ICICS), pp. 1–4 (2015). https://doi.org/10.1109/ICICS.2015.7459918

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Pouyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Pouyan, A.A., Khan, N.A. et al. Locally Optimized Adaptive Directional Time–Frequency Distributions. Circuits Syst Signal Process 37, 3154–3174 (2018). https://doi.org/10.1007/s00034-018-0802-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0802-z

Keywords

Navigation