Skip to main content
Log in

A Fractional Gradient Descent-Based RBF Neural Network

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this research, we propose a novel fractional gradient descent-based learning algorithm (FGD) for the radial basis function neural networks (RBF-NN). The proposed FGD is the convex combination of the conventional, and the modified Riemann–Liouville derivative-based fractional gradient descent methods. The proposed FGD method is analyzed for an optimal solution in a system identification problem, and a closed form Wiener solution of a least square problem is obtained. Using the FGD, the weight update rule for the proposed fractional RBF-NN (FRBF-NN) is derived. The proposed FRBF-NN method is shown to outperform the conventional RBF-NN on four major problems of estimation namely nonlinear system identification, pattern classification, time series prediction and function approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Aftab, M. Moinuddin, M.S. Shaikh, A Novel Kernel for RBF based neural networks. Abstr. Appl. Anal. 2014, (2014)

  2. J. Ahmad, S. Khan, M. Usman, I. Naseem, M. Moinuddin, Fclms: Fractional complex lms algorithm for complex system identification, in 13th IEEE Colloquium on Signal Processing and its Applications (CSPA 2017). IEEE (2017)

  3. J. Ahmad, M. Usman, S. Khan, I. Naseem, H.J. Syed, Rvp-flms : A robust variable power fractional lms algorithm, in 2016 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE (2016)

  4. A. Alexandridis, E. Chondrodima, N. Giannopoulos, H. Sarimveis, A fast and efficient method for training categorical radial basis function networks. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–6 (2016). https://doi.org/10.1109/TNNLS.2016.2598722

    Article  Google Scholar 

  5. A. Alexandridis, E. Chondrodima, H. Sarimveis, Cooperative learning for radial basis function networks using particle swarm optimization. Appl. Soft Comput. 49, 485–497 (2016)

    Article  Google Scholar 

  6. S.H.A. Ali, K. Fukase, S. Ozawa, A fast online learning algorithm of radial basis function network with locality sensitive hashing. Evol. Syst. 7, 1–14 (2016)

    Article  Google Scholar 

  7. I. Aljarah, H. Faris, S. Mirjalili, N. Al-Madi, Training radial basis function networks using biogeography-based optimizer. Neural Computing and Applications (2016). https://doi.org/10.1007/s00521-016-2559-2

    Article  Google Scholar 

  8. R. An, W.J. Li, H.G. Han, J.F. Qiao, An improved levenberg-marquardt algorithm with adaptive learning rate for rbf neural network. in 2016 35th Chinese Control Conference (CCC), pp. 3630–3635 (2016). https://doi.org/10.1109/ChiCC.2016.7553917

  9. E. Anderson, The species problem in iris. Ann. Missouri Bot. Gard. 23, 457–509 (1936). https://doi.org/10.2307/2394164, URLhttp://biostor.org/reference/11559

    Article  Google Scholar 

  10. G.S. Babu, S. Suresh, Meta-cognitive rbf network and its projection based learning algorithm for classification problems. Appl. Soft Comput. 13(1), 654–666 (2013)

    Article  MathSciNet  Google Scholar 

  11. M. Barakat, D. Lefebvre, M. Khalil, F. Druaux, O. Mustapha, Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues. Int. J. Mach. Learn. Cybern. 4(3), 217–233 (2013)

    Article  Google Scholar 

  12. G.W. Bohannan, Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14(9–10), 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  13. J. Cervera, A. Baños, Automatic loop shaping in qft using crone structures. J. Vib. Control 14(9–10), 1513–1529 (2008)

    Article  MathSciNet  Google Scholar 

  14. S. Chen, C.F. Cowan, P.M. Grant, Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2(2), 302–309 (1991)

    Article  Google Scholar 

  15. W. Chen, Z.J. Fu, C.S. Chen, Recent advances in radial basis function collocation methods. Springer (2014). https://doi.org/10.1007/978-3-642-39572-7

    Article  MATH  Google Scholar 

  16. D.P.F. Cruz, R.D. Maia, L.A. da Silva, L.N. de Castro, Beerbf: a bee-inspired data clustering approach to design rbf neural network classifiers. Neurocomputing 172, 427–437 (2016)

    Article  Google Scholar 

  17. L. Debnath, Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003(54), 3413–3442 (2003)

    Article  MathSciNet  Google Scholar 

  18. V. Elanayar, Y.C. Shin et al., Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans. Neural Netw. 5(4), 594–603 (1994)

    Article  Google Scholar 

  19. M.J. Er, S. Wu, J. Lu, H.L. Toh, Face recognition with radial basis function (rbf) neural networks. IEEE Trans. Neural Netw. 13(3), 697–710 (2002)

    Article  Google Scholar 

  20. R.B. Feng, C.S. Leung, A. Constantinides, LCA based RBF training algorithm for the concurrent fault situation. Neurocomputing 191, 341–351 (2016). https://doi.org/10.1016/j.neucom.2016.01.047, URLhttp://www.sciencedirect.com/science/article/pii/S0925231216001375

    Article  Google Scholar 

  21. R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936). https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

    Article  Google Scholar 

  22. L. Fu, M. Zhang, H. Li, Sparse rbf networks with multi-kernels. Neural Process. Lett. 32(3), 235–247 (2010)

    Article  Google Scholar 

  23. L. Glass, M. Mackey, Mackey-Glass equation. Scholarpedia 5(3), 6908 (2010). https://doi.org/10.4249/scholarpedia.6908. Revision #91447

    Article  Google Scholar 

  24. G.J. Gordon, Stable function approximation in dynamic programming, in Machine Learning Proceedings 1995, ed. by A. Prieditis, S. Russell (Morgan Kaufmann, San Francisco (CA), 1995), pp. 261–268. https://doi.org/10.1016/B978-1-55860-377-6.50040-2. URLhttps://www.sciencedirect.com/science/article/pii/B9781558603776500402

    Chapter  Google Scholar 

  25. M.A. Halali, V. Azari, M. Arabloo, A.H. Mohammadi, A. Bahadori, Application of a radial basis function neural network to estimate pressure gradient in water–oil pipelines. J. Taiwan Instit. Chem. Eng. 58, 189–202 (2016)

    Article  Google Scholar 

  26. H.G. Han, Y.N. Guo, J.F. Qiao, Self-organization of a recurrent rbf neural network using an information-oriented algorithm. Neurocomputing 225, 80–91 (2017)

    Article  Google Scholar 

  27. H.G. Han, J.F. Qiao, Adaptive computation algorithm for rbf neural network. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 342–347 (2012)

    Article  Google Scholar 

  28. S.O. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall PTR, Upper Saddle River, 1994)

    MATH  Google Scholar 

  29. B. Jafrasteh, N. Fathianpour, A hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimation. Neurocomputing 235, 217 (2017)

    Article  Google Scholar 

  30. B. Jafrasteh, N. Fathianpour, A hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimation. Neurocomputing 235, 217–227 (2017)

    Article  Google Scholar 

  31. D. Jukic, R. Scitovski, Existence of optimal solution for exponential model by least squares. J. Comput. Appl. Math. 78(2), 317–328 (1997). https://doi.org/10.1016/S0377-0427(96)00160-4 URLhttp://www.sciencedirect.com/science/article/pii/S0377042796001604

    Article  MathSciNet  Google Scholar 

  32. G. Jumarie, Modified riemann-liouville derivative and fractional taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9), 1367–1376 (2006)

    Article  MathSciNet  Google Scholar 

  33. G. Jumarie, Table of some basic fractional calculus formulae derived from a modified riemann-liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)

    Article  MathSciNet  Google Scholar 

  34. G. Jumarie, An approach via fractional analysis to non-linearity induced by coarse-graining in space. Nonlinear Anal. Real World Appl. 11(1), 535–546 (2010)

    Article  MathSciNet  Google Scholar 

  35. G. Jumarie, On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling. Open Phys. 11(6), 617–633 (2013)

    Article  Google Scholar 

  36. S. Khan, J. Ahmad, I. Naseem, M. Moinuddin, A novel fractional gradient-based learning algorithm for recurrent neural networks. Circuits Syst. Signal Process 37, 1–20 (2017)

    MathSciNet  Google Scholar 

  37. S. Khan, N. Ahmed, M.A. Malik, I. Naseem, R. Togneri, M. Bennamoun, FLMF: Fractional least mean fourth algorithm for channel estimation in non-gaussian environment, in 2017 International Conference on Information and Communication Technology Convergence (ICTC), pp. 466–470 (2017). https://doi.org/10.1109/ICTC.2017.8191021

  38. S. Khan, I. Naseem, R. Togneri, M. Bennamoun, A novel adaptive kernel for the rbf neural networks. Circuits Syst. Signal Proces. 36, 1–15 (2016)

    MATH  Google Scholar 

  39. S. Khan, I. Naseem, R. Togneri, M. Bennamoun, RAFP-Pred: robust prediction of antifreeze proteins using localized analysis of n-peptide compositions. IEEE/ACM Trans. Comput. Biol. Bioinfor. 15(1), 244–250 (2018). https://doi.org/10.1109/TCBB.2016.2617337

    Article  Google Scholar 

  40. S. Khan, M. Usman, I. Naseem, R. Togneri, M. Bennamoun, A robust variable step size fractional least mean square (rvss-flms) algorithm, in 13th IEEE Colloquium on Signal Processing and its Applications (CSPA 2017). IEEE (2017)

  41. S. Khan, M. Usman, I. Naseem, R. Togneri, M. Bennamoun, VP-FLMS: a novel variable power fractional LMS algorithm, in 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN) (ICUFN 2017). Milan, Italy (2017)

  42. M. Kleinz, T. Osler, A child’s garden of fractional derivatives. College Math. J. 31, 82 (2000)

    Article  MathSciNet  Google Scholar 

  43. B. Krishna, K. Reddy, Active and passive realization of fractance device of order 1/2. Act. Passive Electr. Compon. 2008, 1–5 (2008)

    Article  Google Scholar 

  44. M.F. Lima, J.A.T. Machado, M.M. Crisóstomo, Experimental signal analysis of robot impacts in a fractional calculus perspective. JACIII 11(9), 1079–1085 (2007)

    Article  Google Scholar 

  45. R.P. Lippmann, Pattern classification using neural networks. IEEE Commun. Mag. 27(11), 47–50 (1989)

    Article  Google Scholar 

  46. J. Lovoie, T.J. Osler, R. Tremblay, Fractional derivatives and special functions. SIAM Rev. 18(2), 240–268 (1976)

    Article  MathSciNet  Google Scholar 

  47. R. Magin, M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14(9–10), 1431–1442 (2008)

    Article  Google Scholar 

  48. A.W. Moore, C.G. Atkeson, Prioritized sweeping: reinforcement learning with less data and less time. Mach. Learn. 13(1), 103–130 (1993). https://doi.org/10.1007/BF00993104

    Article  Google Scholar 

  49. K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  50. I. Naseem, S. Khan, R. Togneri, M. Bennamoun, ECMSRC: a sparse learning approach for the prediction of extracellular matrix proteins. Current Bioinfor. 12(4), 361–368 (2017)

    Article  Google Scholar 

  51. T. Nguyen-Thien, T. Tran-Cong, Approximation of functions and their derivatives: a neural network implementation with applications. Appl. Math. Model. 23(9), 687–704 (1999). https://doi.org/10.1016/S0307-904X(99)00006-2, URLhttp://www.sciencedirect.com/science/article/pii/S0307904X99000062

    Article  Google Scholar 

  52. S.K. Oh, W.D. Kim, W. Pedrycz, Design of radial basis function neural network classifier realized with the aid of data preprocessing techniques: design and analysis. Int. J. General Syst. 45, 1–21 (2015)

    MathSciNet  MATH  Google Scholar 

  53. R. Panda, M. Dash, Fractional generalized splines and signal processing. Signal Proces. 86(9), 2340–2350 (2006)

    Article  Google Scholar 

  54. P.P. Pokharel, J.W. Xu, D. Erdogmus, J.C. Principe, A closed form solution for a nonlinear wiener filter, in 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 3, pp. III–III (2006). https://doi.org/10.1109/ICASSP.2006.1660755

  55. Y. Pu, X. Yuan, K. Liao, J. Zhou, N. Zhang, X. Pu, Y. Zeng, A recursive two-circuits series analog fractance circuit for any order fractional calculus, in ICO20: Optical Information Processing, pp. 60,271Y–60,271Y. International Society for Optics and Photonics (2006)

  56. P.D. Reiner, Algorithms for optimal construction and training of radial basis function neural networks. Ph.D. thesis, Auburn University (2015)

  57. J. Sabatier, O.P. Agrawal, J.T. Machado, Advances in fractional calculus (2007). https://doi.org/10.1007/978-1-4020-6042-7

    Article  Google Scholar 

  58. H. Sarimveis, A. Alexandridis, S. Mazarakis, G. Bafas, A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms. Comput. Chem. Eng. 28(1), 209–217 (2004)

    Article  Google Scholar 

  59. P. Shi, F. Li, L. Wu, C.C. Lim, Neural network-based passive filtering for delayed neutral-type semi-markovian jump systems. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2101–2114 (2017). https://doi.org/10.1109/TNNLS.2016.2573853

    Article  MathSciNet  Google Scholar 

  60. R. Sikora, Z. Giza, F. Filipowicz, J. Sikora, The bell function approximation of material coefficients distribution in the electrical impedance tomography. IEEE Trans. Mag. 36(4), 1023–1026 (2000). https://doi.org/10.1109/20.877615

    Article  MATH  Google Scholar 

  61. L. Sommacal, P. Melchior, A. Oustaloup, J.M. Cabelguen, A.J. Ijspeert, Fractional multi-models of the frog gastrocnemius muscle. J. Vib. Control 14(9–10), 1415–1430 (2008)

    Article  Google Scholar 

  62. A. Tatar, S. Naseri, N. Sirach, M. Lee, A. Bahadori, Prediction of reservoir brine properties using radial basis function (rbf) neural network. Petroleum 1(4), 349–357 (2015)

    Article  Google Scholar 

  63. D. Wettschereck, T. Dietterich, Improving the performance of radial basis function networks by learning center locations. in Advances in Neural Information Processing Systems, vol. 4, pp. 1133–1140. Morgan Kaufmann, San Mateo, Calif, USA (1992)

  64. J. Wu, J. Long, M. Liu, Evolving rbf neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing 148, 136–142 (2015)

    Article  Google Scholar 

  65. L. Wu, Z. Feng, W.X. Zheng, Exponential stability analysis for delayed neural networks with switching parameters: average dwell time approach. IEEE Trans. Neural Netw. 21(9), 1396–1407 (2010). https://doi.org/10.1109/TNN.2010.2056383

    Article  Google Scholar 

  66. J. Yoo, S. Sabir, D. Heo, K.H. Kim, A. Wahab, Y. Choi, S.I. Lee, E.Y. Chae, H.H. Kim, Y.M. Bae, et al., Deep learning can reverse photon migration for diffuse optical tomography. arXiv preprint arXiv:1712.00912 (2017)

  67. Y.H. Yoon, S. Khan, J. Huh, J.C. Ye, Deep learning in RF Sub-sampled B-mode Ultrasound Imaging. arXiv preprint arXiv:1712.06096 (2017)

Download references

Acknowledgements

We like to thank anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Naseem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Naseem, I., Malik, M.A. et al. A Fractional Gradient Descent-Based RBF Neural Network. Circuits Syst Signal Process 37, 5311–5332 (2018). https://doi.org/10.1007/s00034-018-0835-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0835-3

Keywords

Navigation