Skip to main content
Log in

Linear System of Order Reduction Using a Modified Balanced Truncation Method

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Most of the physical structures may be described in terms of mathematical models. The mathematical methods of system modelling also lead to a thorough explanation of the mechanism in the form of mathematical equations, which are often difficult to use for both analysis and controller synthesis. Consequently, it is useful and very important to determine the likelihood of different calculations of the same type, but in a lower-order representation, which can be assumed to correctly represent almost all the basic features of the system under examination. In this article, the proposed method is based on the modified balanced truncation method (BTM) by which the steady-state value from the problem of the BTM has been circumvented. This weakness has been eliminated by using a modified BTM to narrow the deviations by incorporating a gain factor into the response transfer matrix of the reduced-order model (ROM) to adjust the steady-state value of the ROM, without affecting the variations in dynamical behaviour as compared to the original system. To illustrate the proposed method, a real-time application model has been reduced where the ROM retains all the essential characteristics of the original system. In order to analyse the effectiveness, accuracy and validation with the other existing reduction methods, two standard numerical test systems have been taken from the literature and been tested also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

My manuscript has no associated data.

References

  1. R. Abgrall, D. Amsallem, R. Crisovan, Robust model reduction by L1-norm minimization and approximation via dictionaries: application to nonlinear hyperbolic problems. Adv Model Simul Eng Sci. 3(1), 1–16 (2016). https://doi.org/10.1186/s40323-015-0055-3

    Article  Google Scholar 

  2. J.E. Ackermann, R.S. Bucy, Canonical minimal realization of a matrix of impulse response sequences. Inf. Control 19(3), 224–231 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. O.M. Alsmadi, S.S. Saraireh, Z.S. Abo-Hammour, A.H. Al-Marzouq, Substructure preservation sylvester-based model order reduction with application to power systems. Electric Power Compon. Syst. 42(9), 914–926 (2014)

    Article  Google Scholar 

  4. A.C. Antoulas, D.C. Sorensen, Approximation of large-scale dynamical systems: an overview. IFAC Proc. Vol. 37(11), 19–28 (2004). https://doi.org/10.1016/S1474-6670(17)31584-7

    Article  Google Scholar 

  5. A.C. Antoulas, Approximation of Large-Scale Dynamical Systems, United States Society for Industrial and Applied Mathematics, 1st edn. (SIAM Publications, 2005). https://doi.org/10.1137/1.9780898718713

    Book  MATH  Google Scholar 

  6. A.C. Antoulas, 8. Hankel-Norm approximation, in Approximation of Large-Scale Dynamical Systems (2011)

  7. A.C. Antoulas, P. Benner, Feng, L, Model reduction by iterative error system approximation. Math. Comput. Model. Dyn. Syst. 24(2), 103–118 (2018)

    Article  MathSciNet  Google Scholar 

  8. R.K. Appiah, Linear model reduction using Hurwitz polynomial approximation. Int. J. Control 28(3), 477–488 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. R.K. Appiah, Pade methods of Hurwitz polynomial approximation with application to linear system reduction. Int. J. Control 29(1), 39–48 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Benner, S. Gugercin, K. Willcox, A Survey of model reduction methods for parametric systems. SIAM Rev. 57(4), 483–531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Bistritz, G. Langholz, Model reduction by Chebyshev polynomial techniques. IEEE Trans. Autom. Control 24(5), 741–747 (1979)

    Article  MATH  Google Scholar 

  12. D. Boley, B.N. Datta, Numerical methods for linear control systems, in Systems and Control in the Twenty-First Century, vol 22, No. 1 (Birkhäuser, Boston, 1997), pp. 51–74

  13. X. Cao, M.B. Saltik, S. Weiland, Optimal Hankel norm model reduction for discrete-time descriptor systems. J. Franklin Inst. 356(7), 4124–4143 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. C.F. Chen, Model reduction of multivariable control systems by means of matrix continued fractions. Int. J. Control 20(2), 225–238 (1974)

    Article  MATH  Google Scholar 

  15. T.C. Chen, C.Y. Chang, K.W. Han, Reduction of transfer functions by the stability-equation method. J. Franklin Inst. 308(4), 389–404 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. T.C. Chen, C.Y. Chang, K.W. Han, Model reduction using the stability-equation method and the continued-fraction method. Int. J. Control 32(1), 81–94 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.R. Chidambara, Two simple techniques for the simplification of large dynamic systems. Joint Autom. Control Conf. 7, 669–674 (1969)

    Google Scholar 

  18. G. Zames, N.M. Ajlouni, N.M. Ajlouni, N.M. Ajlouni, J.H. Holland, W.D. Hills, D.E. Goldberg, Genetic algorithms in search, optimization and machine learning. Inf. Technol. J. 3(1), 301–302 (1981)

    Google Scholar 

  19. E. Davison, A method for simplifying linear dynamic systems. IEEE Trans. Autom. Control 11(1), 93–101 (1966)

    Article  Google Scholar 

  20. A. Fossard, On a method for simplifying linear dynamic systems. IEEE Trans. Autom. Control 15(2), 261–262 (1970)

    Article  Google Scholar 

  21. E.J. Davison, F.T. Man, Interaction index for multivariable control systems. Proc. Inst. Electr. Engi. 117(2), 459–462 (1970)

    Article  MathSciNet  Google Scholar 

  22. S.R. Desai, R. Prasad, A novel order diminution of LTI systems using Big Bang Big Crunch optimization and routh approximation. Appl. Math. Model. 37(16–17), 8016–8028 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Eitelberg, Comments on model reduction by minimizing the equation error. IEEE Trans. Autom. Control 27(4), 1000–1002 (1982)

    Article  MathSciNet  Google Scholar 

  24. O.K. Erol, I. Eksin, A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)

    Article  Google Scholar 

  25. R.W. Freund, Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123(1–2), 395–421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  27. M.J. Goldman, W.J. Porras, C.T. Leondes, Multivariable systems reduction via Cauer forms. Int. J. Control 34(4), 623–650 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Gugercin, An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems. Linear Algebra Appl. 428(8–9), 1964–1986 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Gugercin, A.C. Antoulas, A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. A.K. Gupta, D. Kumar, P. Samuel, A mixed-method for order reduction of linear time invariant systems using big bang-big crunch and eigen spectrum algorithm. Int. J. Autom. Control 13(2), 158–175 (2019)

    Article  Google Scholar 

  31. R.D. Gustafson, A paper and pencil control system design. J. Fluids Eng. Trans. ASME 88(2), 329–336 (1966)

    Article  Google Scholar 

  32. P. Gutman, C. Mannerfelt, P. Molander, Contributions to the model reduction problem. IEEE Trans. Autom. Control 27(2), 454–455 (1982)

    Article  MATH  Google Scholar 

  33. J. Hickin, N. Sinha, K, New method of obtaining reduced-order models for linear multivariable systems. Electron. Lett. 12(4), 90–92 (1976)

    Article  Google Scholar 

  34. J. Hickin, N. Sinha, Model reduction for linear multivariable systems. IEEE Trans. Autom. Control 25(6), 1121–1127 (1980)

    Article  MATH  Google Scholar 

  35. C. Huang, K. Zhang, X. Dai, W. Tang, A modified balanced truncation method and its application to model reduction of power system, in 2013 IEEE Power and Energy Society General Meeting (2013), pp. 1–5

  36. M. Hutton, B. Friedland, Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans. Autom. Control 20(3), 329–337 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Hwang, K.Y. Wang, Optimal Routh approximations for continuous-time systems. Int. J. Syst. Sci. 15(3), 249–259 (1984)

    Article  MATH  Google Scholar 

  38. M. Imran, A. Ghafoor, V. Sreeram, A frequency weighted model order reduction technique and error bounds. Automatica 50(12), 3304–3309 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Kaveh, M.I. Ghazaan, Hybridized optimization algorithms for design of trusses with multiple natural frequency constraints. Adv. Eng. Softw. 79, 137–147 (2015)

    Article  Google Scholar 

  40. A. Kaveh, S. Talatahari, Size optimization of space trusses using Big Bang-Big Crunch algorithm. Comput. Struct. 87(17–18), 1129–1140 (2009)

    Article  Google Scholar 

  41. A. Kaveh, S. Talatahari, Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 87(5–6), 267–283 (2009)

    Article  Google Scholar 

  42. A. Kaveh, S. Talatahari, Hybrid algorithm of harmony search, particle swarm and ant colony for structural design optimization, in Harmony Search Algorithms for Structural Design Optimization (Springer, Berlin, Heidelberg, 2009). pp. 159–198

  43. P. Khargonekar, K. Poolla, A. Tannenbaum, Robust control of linear time-invariant plants using periodic compensation. IEEE Trans. Autom. Control 30(11), 1088–1096 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. W. Krajewski, U. Viaro, On MIMO model reduction by the weighted equation–error approach. Numer. Algorithms 44(1), 83–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. V. Krishnamurthy, V. Seshadri, Model reduction using the Routh stability criterion. IEEE Trans. Autom. Control 23(4), 729–731 (1978)

    Article  Google Scholar 

  46. D. Kumar, J.P. Tiwari, S.K. Nagar, Reducing order of large-scale systems by extended balanced singular perturbation approximation. Int. J. Autom. Control 6(1), 21–38 (2012)

    Article  Google Scholar 

  47. J. Kumar, A. Sikander, M. Mehrotra, G. Parmar, A new soft computing approach for order diminution of interval system. Int. J. Syst. Assur. Eng. Manag. 11(2), 366–373 (2020)

    Article  Google Scholar 

  48. M. Lal, R. Mitra, Simplification of large system dynamics using a moment evaluation algorithm. IEEE Trans. Autom. Control 19(5), 602–603 (1974)

    Article  MathSciNet  Google Scholar 

  49. M. Lal, H. Singh, R. Parthasarathy, A minimal canonical realization algorithm for impulse response matrix using moments. Proc. IEEE 63(3), 538–540 (1975)

    Article  Google Scholar 

  50. Y. Liu, B.D. Anderson, Singular perturbation approximation of balanced systems. Int. J. Control 50(4), 1379–1405 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  51. Y. Liu, Anderson BDOO, Singular perturbation approximation of balanced systems. in Proceedings of the IEEE Conference on Decision and Control (1989), pp. 1355–1360, https://doi.org/https://doi.org/10.1109/CDC.1989.70360

  52. T.N. Lucas, Factor division: a useful algorithm in model reduction. IEE Proc. D Control Theory Appl. 130(6), 362–364 (1983)

    Article  MATH  Google Scholar 

  53. T.N. Lucas, Linear system reduction by the modified factor division method. IEE Proc. D. Control Theory Appl. 133(6), 293–296 (1986)

    Article  MATH  Google Scholar 

  54. M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Particle Swarm Optimisation, in Evolutionary Algorithms and Neural Networks (Springer, 2019), pp. 5–31, http:doi.org/https://doi.org/10.1007/978-3-319-93025-1_2

  56. B. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Narwal, B.R. Prasad, A novel order reduction approach for LTI systems using cuckoo search optimization and stability equation. IETE J. Res. 62(2), 154–163 (2016)

    Article  Google Scholar 

  58. A. Narwal, R. Prasad, Optimization of LTI systems using modified clustering algorithm. IETE Tech. Rev. 34(2), 201–213 (2017)

    Article  Google Scholar 

  59. G. Obinata, H. Inooka, Authors’ reply to comments on model reduction by minimizing the equation error. IEEE Trans. Autom. Control 28(1), 124–125 (1983)

    Article  Google Scholar 

  60. T. Ozaki, Continued fraction representation of the Fermi–Dirac function for large-scale electronic structure calculations. Phys. Rev. B. 75(3), 035123 (2007)

    Article  Google Scholar 

  61. J. Pal, Stable reduced-order Padé approximants using the Routh-Hurwitz array. Electron. Lett. 15(8), 225–226 (1979)

    Article  Google Scholar 

  62. J. Pal, Improved Pade approximants using stability equation method. Electron. Lett. 19(11), 426–427 (1983)

    Article  Google Scholar 

  63. J. Pal, Reply: stable reduced-order Padé approximants using the Routh–Hurwitz array. Electron. Lett. 15(16), 502 (2007). https://doi.org/10.1049/el:19790362

    Article  Google Scholar 

  64. J. Pal, L.M. Ray, Stable Pade approximants to multivariable systems using a mixed method. Proc. IEEE 68(1), 176–178 (1980)

    Article  Google Scholar 

  65. G. Parmar, S. Mukherjee, R. Prasad, System reduction using factor division algorithm and eigen spectrum analysis. Appl. Math. Model. 31(11), 2542–2552 (2007)

    Article  MATH  Google Scholar 

  66. G. Parmar, M.K. Pandey, V. Kumar, System order reduction using GA for unit impulse input and a comparative study using ISE and IRE, in Proceedings of the International Conference on Advances in Computing, Communication and Control (2009), pp. 3–7

  67. R. Parthasarathy, K.N. Jayasimha, System reduction using stability-equation method and modified Cauer continued fraction. Proc. IEEE 70(10), 1234–1236 (1982)

    Article  Google Scholar 

  68. R. Parthasarathy, H. Singh, On suboptimal linear system reduction. Proc. IEEE 63(11), 1610–1611 (1975)

    Article  Google Scholar 

  69. R. Poli, Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. Appl. 2008, 1–10 (2008). https://doi.org/10.1155/2008/685175

    Article  Google Scholar 

  70. A.K. Prajapati, R. Prasad, Model order reduction by using the balanced truncation and factor division methods. IETE J. Res. 65(6), 827–842 (2019)

    Article  Google Scholar 

  71. A.K. Prajapati, R. Prasad, Reduced-order modelling of LTI systems by using Routh approximation and factor division methods. Circuits Syst. Signal Process. 38(7), 3340–3355 (2019)

    Article  Google Scholar 

  72. A.K. Prajapati, R. Prasad, Order reduction of linear dynamic systems by improved Routh approximation method. IETE J. Res. 65(5), 702–715 (2019)

    Article  Google Scholar 

  73. A.K. Prajapati, R. Prasad, Order reduction in linear dynamical systems by using improved balanced realization technique. Circuits Syst. Signal Process. 38(11), 5289–5303 (2019)

    Article  Google Scholar 

  74. A.K. Prajapati, R. Prasad, A new model reduction method for the linear dynamic systems and its application for the design of compensator. Circuits Syst. Signal Process. 39, 2328–2348 (2020)

  75. A.K. Prajapati, R. Prasad, J. Pal, Contribution of time moments and Markov parameters in reduced order modeling, in 2018 3rd International Conference for Convergence in Technology (I2CT) ed. by R. Allemang, J. De Clerck, C. Niezrecki, A. Wicks (2018), pp. 1–7

  76. A.K. Prajapati, V.D. Rayudu, A. Sikander, R. Prasad, A new technique for the reduced-order modelling of linear dynamic systems and design of controller. Circuits Syst. Signal Process. 39(10), 4849–4867 (2020)

    Article  Google Scholar 

  77. R. Prasad, S. Devi, Reduction of linear discrete time systems in frequency domain using continued fraction expansions. Syst. Sci. 30(1), 65–76 (2004)

    MathSciNet  MATH  Google Scholar 

  78. Z. Qin, C.K. Cheng, RCLK-VJ network reduction with Hurwitz polynomial approximation, in Proceedings of the 2003 Asia and South Pacific Design Automation Conference (2003), pp. 283–291

  79. S. Rahrovani, M.K. Vakilzadeh, T. Abrahamsson, A metric for modal truncation in model reduction problems part 1: performance and error analysis, in Topics in Modal Analysis, vol 7 by R. Allemang, J. De Clerck, C. Niezrecki, A. Wicks (Springer, New York, 2014), pp. 781–788

  80. J.S. Rana, Order reduction using Mihailov criterion and Pade approximations. Int. J. Innov. Eng. Technol. 2, 19–24 (2013)

    Google Scholar 

  81. M.G. Safonov, R.Y. Chiang, Model reduction for robust control: a Schur relative error method. Int. J. Adapt. Control Signal Process. 2(4), 259–272 (1988)

    Article  MATH  Google Scholar 

  82. M.P. Saka, O.ĞU.Z.H.A.N. Hasançebi, Z.W. Geem, Metaheuristics in structural optimization and discussions on harmony search algorithm. Swarm Evolut. Comput. 28, 88–97 (2016). https://doi.org/10.1016/j.swevo.2016.01.005

    Article  Google Scholar 

  83. R. Salim, M. Bettayeb, H2 and H∞ optimal model reduction using genetic algorithms. J. Franklin Inst. 348(7), 1177–1191 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. D.K. Sambariya, G. Arvind, High order diminution of LTI system using stability equation method. J. Adv. Math. Comput. Sci. (2016). https://doi.org/10.9734/bjmcs/2016/23243

    Article  Google Scholar 

  85. D.K. Sambariya, A.K. Sharma, T. Gupta, Order reduction of air core transformer using continued fraction. J. Eng. Sci. Technol. 14(1), 253–264 (2019)

    Google Scholar 

  86. H. Sandberg, Rantzer A, Balanced truncation of linear time-varying systems. IEEE Trans. Autom. Control 49(2), 217–229 (2004). https://doi.org/10.1109/TAC.2003.822862

    Article  MathSciNet  MATH  Google Scholar 

  87. P. Saraswat, G.B.G. Parmar, Application of differential evolution in order reduction of large scale systems, in 4th International Conference, ‘“icatetr-2015”’ (BKIT, Kota, 2013), pp. 124–127

  88. P. Saraswat, G. Parmar, Model order reduction of transformer linear section model using simulated annealing, in 2015 Communication, Control and Intelligent Systems (CCIS) (2015), pp. 272–276. https://doi.org/https://doi.org/10.1109/CCIntelS.2015.7437922

  89. C.H. Seshukumar, B. Dasu, M. Kumar, A Hybrid reduction technique for transformer linear section model. Int. J. Eng. Res. Technol IJERT 2(11), 3494–3498 (2013)

    Google Scholar 

  90. Y. Shamash, Continued fraction methods for the reduction of discrete-time dynamic systems. Int. J. Control 20(2), 267–275 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  91. Y. Shamash, Stable reduced-order models using Padé-type approximations. IEEE Trans. Autom. Control 19(5), 615–616 (1974). https://doi.org/10.1109/TAC.1974.1100661

    Article  MATH  Google Scholar 

  92. Y. Shamash, Linear system reduction using Pade approximation to allow retention of dominant modes. Int. J. Control 21(2), 257–272 (1975). https://doi.org/10.1080/00207177508921985

    Article  MATH  Google Scholar 

  93. Y. Shamash, Multivariable system reduction via modal methods and Padé approximation. IEEE Trans. Autom. Control 20(6), 815–817 (1975). https://doi.org/10.1109/TAC.1975.1101090

    Article  MATH  Google Scholar 

  94. Y. Shamash, Analytical methods of reducing linear systems, in 7th Annual Pittsburgh Conference on Modelling and Simulation (1977), pp. 305–309

  95. Y. Smamash, Truncation method of reduction: a viable alternative. Electron. Lett. 17(2), 97–99 (1981). https://doi.org/10.1049/el:19810070

    Article  MathSciNet  Google Scholar 

  96. H. Shen, M. Xing, Z. Wu, J. Cao, T. Huang, l2−l∞ State estimation for persistent dwell-time switched coupled networks subject to round-robin protocol. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/tnnls.2020.2995708

    Article  Google Scholar 

  97. L. Shieh, Y. Wei, A mixed method for multivariable system reduction. IEEE Trans. Autom. Control 20(3), 429–432 (1975). https://doi.org/10.1109/TAC.1975.1100964

    Article  MATH  Google Scholar 

  98. F. Jopp, B. Breckling, H. Reuter (eds.), Modelling Complex Ecological Dynamics (Springer, London, 2011). https://doi.org/10.1007/978-3-642-05029-9

    Book  Google Scholar 

  99. A. Sikander, R. Prasad, Soft computing approach for model order reduction of linear time invariant systems. Circuits Syst. Signal Process. 34(11), 3471–3487 (2015). https://doi.org/10.1007/s00034-015-0018-4

    Article  Google Scholar 

  100. A. Sikander, R. Prasad, Linear time-invariant system reduction using a mixed methods approach. Appl. Math. Model. 39(16), 4848–4858 (2015). https://doi.org/10.1016/j.apm.2015.04.014

    Article  MathSciNet  MATH  Google Scholar 

  101. A. Sikander, R. Prasad, Reduced order modelling based control of two wheeled mobile robot. J. Intell. Manuf. 30(3), 1057–1067 (2019). https://doi.org/10.1007/s10845-017-1309-3

    Article  Google Scholar 

  102. A. Sikander, P. Thakur, Reduced order modelling of linear time-invariant system using modified cuckoo search algorithm. Soft. Comput. 22(10), 3449–3459 (2018). https://doi.org/10.1007/s00500-017-2589-4

    Article  Google Scholar 

  103. A. Sikander, P. Thakur, R.C. Bansal, S. Rajasekar, A novel technique to design cuckoo search based FOPID controller for AVR in power systems. Comput. Electr. Eng. 70, 261–274 (2018). https://doi.org/10.1016/j.compeleceng.2017.07.005

    Article  Google Scholar 

  104. A. Sikander, P. Thakur, I. Uniyal, Hybrid method of reduced order modelling for LTI system using evolutionary algorithm, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (2016), pp. 84–88

  105. N. Singh, R. Prasad, H.O. Gupta, Reduction of power system model using balanced realization, Routh and Padé approximation methods. Int. J. Model. Simul. 28(1), 57–63 (2008). https://doi.org/10.1080/02286203.2008.11442450

    Article  Google Scholar 

  106. V. Singh, D. Chandra, H. Kar, Improved routh-pade/spl acute/approximants: a computer-aided approach. IEEE Trans. Autom. Control 49(2), 292–296 (2004). https://doi.org/10.1109/TAC.2003.822878

    Article  MATH  Google Scholar 

  107. V.P. Singh, P. Chaubey, D. Chandra, Model order reduction of continuous time systems using pole clustering and Chebyshev polynomials, in 2012 Students Conference on Engineering and Systems (2012), pp. 1–4

  108. M. Srinivasan, A. Krishnan, Transformer linear section model order reduction with an improved pole clustering. Eur. J. Sci. Res. 44(4), 541–549 (2010)

    Google Scholar 

  109. S.K. Suman, V.K. Giri, Genetic algorithms: Basic concepts and real world applications. Int. J. Electr. Electron. Comput. Syst. (IJEECS) 3, 116–123 (2016)

    Google Scholar 

  110. S.K. Suman, V.K. Giri, Speed control of DC motor using optimization techniques based PID Controller, in 2016 IEEE International Conference on Engineering and Technology (ICETECH) (2016), pp. 81–587

  111. S.K. Suman, A. Kumar, Invest. Reduct. Large Scale Dyn. Syst. 18, 175–180 (2019)

    Google Scholar 

  112. S.K. Suman, A. Kumar, Reduction of large-scale dynamical systems by extended balanced singular perturbation approximation. Int. J. Math. Eng. Manag. Sci. 5(5), 939–956 (2020). https://doi.org/10.33889/IJMEMS.2020.5.5.072

    Article  Google Scholar 

  113. M. Thieffry, A. Kruszewski, T.-M. Guerra, C. Duriez, Trajectory tracking control design for large-scale linear dynamical systems with applications to soft robotics. IEEE Trans. Control Syst. Technol. (2019). https://doi.org/10.1109/tcst.2019.2953624

    Article  Google Scholar 

  114. S.K. Tiwari, G. Kaur, Modified method for reducing the order of LTI system using factor division algorithm, in 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (2016), pp. 1780–1786

  115. I. Uniyal, A. Sikander, A comparative analysis of PID controller design for AVR based on optimization techniques, in Intelligent Communication, Control and Devices (Springer, Singapore, 2018), pp. 1315–1323

  116. P. Verma, P.K. Juneja, M. Chaturvedi, Reduction of SISO system using different mixed reduction methods, in 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN) (2016), pp. 657–661

  117. C.B. Vishwakarma, R. Prasad, Order reduction using modified pole clustering and Pade approximations. World Acad. Sci. Eng. Technol. 56, 787–791 (2011)

    Google Scholar 

  118. C.B. Vishwakarma, R. Prasad, Clustering method for reducing order of linear system using Pade approximation. IETE J. Res. 54(5), 326–330 (2008). https://doi.org/10.4103/0377-2063.48531

    Article  Google Scholar 

  119. C.B. Vishwakarma, R. Prasad, MIMO system reduction using modified pole clustering and genetic algorithm. Modell. Simul. Eng. 1, 1–6 (2009). https://doi.org/10.1155/2009/540895

    Article  Google Scholar 

  120. C.B. Vishwakarma, R. Prasad, Time domain model order reduction using Hankel matrix approach. J. Franklin Inst. 351(6), 3445–3456 (2014). https://doi.org/10.1016/j.jfranklin.2014.02.005

    Article  MathSciNet  MATH  Google Scholar 

  121. B.W. Wan, Linear model reduction using Mihailov criterion and Pade approximation technique. Int. J. Control 33(6), 1073–1089 (1981). https://doi.org/10.1080/00207178108922977

    Article  MathSciNet  MATH  Google Scholar 

  122. D.A. Wilson, Optimum solution of model-reduction problem. Proc. Inst. Electr. Eng. 117(6), 1161–1165 (1970)

    Article  Google Scholar 

  123. I. Yang, S.A. Burden, R. Rajagopal, S.S. Sastry, C.J. Tomlin, Approximation algorithms for optimization of combinatorial dynamical systems. IEEE Trans. Autom. Control 61(9), 2644–2649 (2015). https://doi.org/10.1109/TAC.2015.2504867

    Article  MathSciNet  MATH  Google Scholar 

  124. X.S. Yang, Nature-Inspired Metaheuristic Algorithms (Luniver press, New York, 2010).

    Google Scholar 

  125. X. Yang, J. Cao, J. Lu, Synchronization of Markovian coupled neural networks with nonidentical node-delays and random coupling strengths. IEEE Trans. Neural Netw. Learn. Syst. 23(1), 60–71 (2011). https://doi.org/10.1109/TNNLS.2011.2177671

    Article  Google Scholar 

  126. X.S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (Springer, Berlin, Heidelberg, 2010), 65-74

  127. X.-S. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications (Wiley, London, 2010).

    Book  Google Scholar 

  128. J.C. Yoccoz, Continued fraction algorithms for interval exchange maps: an introduction. Front. Number Theory Phys. Geom. 1, 401–435 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  129. K. Zhou, G. Salomon, E. Wu, Balanced realization and model reduction for unstable systems. Int. J. Robust Nonlinear Control IFAC Affil. J. 9(3), 183–198 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Suman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suman, S.K., Kumar, A. Linear System of Order Reduction Using a Modified Balanced Truncation Method. Circuits Syst Signal Process 40, 2741–2762 (2021). https://doi.org/10.1007/s00034-020-01596-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01596-3

Keywords

Navigation