Skip to main content
Log in

Homogeneous Formulas and Symmetric Polynomials

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We investigate the arithmetic formula complexity of the elementary symmetric polynomials \({S^k_n}\) . We show that every multilinear homogeneous formula computing \({S^k_n}\) has size at least \({k^{\Omega(\log k)}n}\) , and that product-depth d multilinear homogeneous formulas for \({S^k_n}\) have size at least \({2^{\Omega(k^{1/d})}n}\) . Since \({S^{n}_{2n}}\) has a multilinear formula of size O(n 2), we obtain a superpolynomial separation between multilinear and multilinear homogeneous formulas. We also show that \({S^k_n}\) can be computed by homogeneous formulas of size \({k^{O(\log k)}n}\) , answering a question of Nisan and Wigderson. Finally, we present a superpolynomial separation between monotone and non-monotone formulas in the noncommutative setting, answering a question of Nisan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Friedman (1984). Constructing O(n log n) size monotone formulae for the k–th elementary symmetric polynomial of n Boolean variables. In Proceedings of the 25th FOCS, 506–515.

  • Hansel G. (1964) Nombre minimal de contacts de fermeture nécessaire pour réaliser une function Booléenne symmétriques de n variables. C. R. Acad. Sci. Paris 258: 6037–6040

    MathSciNet  MATH  Google Scholar 

  • Hyafil L. (1979) On the parallel evaluation of multivariate polynomials. SIAM J. Comput. 8(2): 120–123

    Article  MathSciNet  MATH  Google Scholar 

  • Khasin L.S. (1970) Complexity bounds for the realization of monotone symmetrical functions by means of formulas in the basis +,*,-. Sov. Phys. Dokl. 14: 1149–1151

    MathSciNet  Google Scholar 

  • N. Nisan (1991). Lower bounds for non-commutative computation. In Proceeding of the 23th STOC, 410–418.

  • Nisan N., Wigderson A. (1996) Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity 6: 217–234

    Article  MathSciNet  Google Scholar 

  • R. Raz (2004). Multi-linear formulas for Permanent and Determinant are of super-polynomial size. In Proceeding of the 36th STOC, 633–641.

  • R. Raz (2009). Tensor rank and lower bounds on arithmetic formulas. Manuscript.

  • Shamir E., Snir M. (1979) On the depth complexity of formulas. Journal Theory of Computing Systems 13(1): 301–322

    MathSciNet  Google Scholar 

  • Shpilka A., Wigderson A. (2001) Depth-3 arithmetic formulae over fields of characteristic zero. Journal of Computational Complexity 10(1): 1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Strassen V. (1973) Vermeidung von Divisionen. J. of Reine Angew. Math. 264: 182–202

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Hrubeš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrubeš, P., Yehudayoff, A. Homogeneous Formulas and Symmetric Polynomials. comput. complex. 20, 559–578 (2011). https://doi.org/10.1007/s00037-011-0007-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-011-0007-3

Keywords

Subject classification

Navigation