Skip to main content
Log in

Kähler–Einstein Metrics on Stable Varieties and log Canonical Pairs

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let X be a canonically polarized variety, i.e. a complex projective variety such that its canonical class K X defines an ample \({\mathbb{Q}}\) -line bundle, and satisfying the conditions G 1 and S 2. Our main result says that X admits a Kähler–Einstein metric iff X has semi-log canonical singularities i.e. iff X is a stable variety in the sense of Kollár–Shepherd-Barron and Alexeev (whose moduli spaces are known to be compact). By definition a Kähler–Einstein metric in this singular context simply means a Kähler–Einstein on the regular locus of X with volume equal to the algebraic volume of K X , i.e. the top intersection number of K X . We also show that such a metric is uniquely determined and extends to define a canonical positive current in c 1(K X ). Combined with recent results of Odaka our main result shows that X admits a Kähler–Einstein metric iff X is K-stable, which thus confirms the Yau–Tian–Donaldson conjecture in this general setting of (possibly singular) canonically polarized varieties. More generally, our results are shown to hold in the setting of log minimal varieties and they also generalize some prior results concerning Kähler–Einstein metrics on quasi-projective varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Alexeev. Log Canonical Singularities and Complete Moduli of Stable Pairs. arXiv:alg-geom/9608013 (1996).

  2. T. Aubin. Équations du type Monge–Ampère sur les variétés Kählériennes compactes. Bull. Sci. Math., 102 (1978)

  3. R. J. Berman and B. Berndtsson. Real Monge–Ampère Equations and Kähler–Ricci Solitons on Toric Log Fano Varieties. arXiv:1207.6128 (2012).

  4. R. J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi. Kähler–Einstein Metrics and the Kähler–Ricci Flow on Log-Fano Varieties. arXiv:1111.7158v2 (2011).

  5. R. J. Berman, S. Boucksom, V. Guedj and A. Zeriahi. A variational approach to complex Monge–Ampère equations (2009) (to appear in Publ. IHES, arXiv:0907.4490).

  6. S. Boucksom, A. Broustet and G. Pacienza. Uniruledness of stable base loci of adjoint linear systems with and without Mori theory (2010) (to appear in Math. Zeit., arXiv:0902.1142).

  7. C. Birkar, P. Cascini, C. Hacon and J. McKernan. Existence of minimal models for varieties of log general type. J. Am. Math. Soc., 23 (2010), 405468

  8. R. J. Berman and J.-P. Demailly. Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology. In: Progress in Mathematics, Vol. 296. Birkhäuser/Springer, New York (2012), p. 3966.

  9. S. Boucksom, P. Eyssidieux and V. Guedj. Introduction to the Kähler–Ricci flow. In: Lecture Notes in Mathematics (to appear). Springer, New York (2013).

  10. S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi. Monge–Ampère equations in big cohomology classes. Acta Math., (2)205 (2010), 199262

  11. R. J. Berman. Bergman kernels and equilibrium measures for line bundles over projective manifolds. Am. J. Math. (5)131 (2009), 14851524

  12. R. J. Berman. A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kähler–Einstein metrics. arXiv:1011.3976 (2011).

  13. R. J. Berman. K-polystability of \({\mathbb{Q}}\) -Fano varieties admitting Kähler–Einstein metrics. arXiv:1205.6214 (2012).

  14. B. Bhatt, W. Ho, Z. Patakfalvi and C. Schnell. Moduli of products of stable varieties. arXiv:1206.0438 (2012).

  15. S. Boucksom. On the volume of a line bundle. Int. J. Math., (10)13 (2002), 10431063

  16. S. Boucksom. Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. École Norm. Sup. (4), (1)37 (2004), 4576

  17. S. Brendle. Ricci flat Kähler metrics with edge singularities (2011) (to appear in IMRN, arXiv:1103.5454)

  18. E. Bedford and B. Taylor. Fine topology, Silov boundary, and (dd c)n. J. Funct. Anal., (2)72 (1987), 225251

  19. X. Chen, S. Donaldson and S. Sun. Kähler–Einstein Metrics on Fano Manifolds, I: Approximation of Metrics with Cone Singularities. arXiv:1211.4566 (2012).

  20. X. Chen, S. Donaldson and S. Sun. Kähler–Einstein Metrics on Fano Manifolds, II: Limits with Cone Angle Less Than 2 π. arXiv:1212.4714 (2012).

  21. X. Chen, S. Donaldson and S. Sun. Kähler–Einstein Metrics on Fano Manifolds, III: Limits as Cone Angle Approaches 2π and Completion of the Main Proof. arXiv:1302.0282 (2013).

  22. J. Carlson and P. Griffiths. A defect relation for equidimensional holomorphic mappings between algebraic varieties. Ann. Math. 95 (1972), 557584

  23. F. Campana, H. Guenancia and M. Păun. Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Ann. Sci. École Norm. Sup., 46 (2013), 879916

  24. S.-Y. Cheng and S.-T. Yau. On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math., 33 (1980), 507544

  25. J.-P. Demailly. Estimations L 2 pour l’opérateur \({\bar \partial }\) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup. (4), (3)15 (1982), 457511

  26. J.-P. Demailly. Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines. Mém. Soc. Math. France (N.S.), 19 (1985), 124

  27. J.-P. Demailly. Regularization of closed positive currents and intersection theory. J. Algebraic Geom., (3)1 (1992), 361409

  28. P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math., 36 (1969), 75109

  29. J.-P. Demailly and N. Pali. Degenerate complex Monge–Ampère equations over compact Kähler manifolds. Int. J. Math., 21 (2010)

  30. P. Eyssidieux, V. Guedj and A. Zeriahi. A priori \({L^\infty}\)-estimates for degenerate complex Monge–Ampère equations. Int. Math. Res. Notes (2008), Art. ID rnn 070, 8

  31. P. Eyssidieux, V. Guedj and A. Zeriahi. Singular Kähler–Einstein metrics. J. Am. Math. Soc., 22 (2009), 607639

  32. R. Elkik. Fibrés d’intersections et intégrales de classes de Chern. Ann. Sci. École Norm. Sup. (4), (2)22 (1989), 195226

  33. R. Elkik. Métriques sur les fibrés d’intersection. Duke Math. J., (1)61 (1990), 303328

  34. O. Fujino and Y. Gongyo. Log Pluricanonical Representations and Abundance Conjecture. arXiv:1104.0361 (2012).

  35. J. E. Fornæss and R. Narasimhan. The Levi problem on complex spaces with singularities. Math. Ann., (1)248 (1980), 4772

  36. G. Freixas i Montplet. An arithmetic Hilbert–Samuel theorem for pointed stable curves. J. Eur. Math. Soc. (JEMS), (2)14 (2012), 321351

  37. A. Fujiki and G. Schumacher. The moduli space of extremal compact Kähler manifolds and generalized Weil–Petersson metrics. Publ. Res. Inst. Math. Sci., (1)26 (1990), 101183

  38. O. Fujino. Finite generation of the log canonical ring in dimension four. Kyoto J. Math., (4)50 (2010), 671684

  39. D. Greb, S. Kebekus, S. J. Kovács and T. Peternell. Differential forms on log canonical spaces. Publ. Math. Inst. Hautes Études Sci. 114 (2011), 87169

  40. H. Guenancia and M. Păun. Conic Singularities Metrics with Prescribed Ricci Curvature: The Case of General Cone Angles Along Normal Crossing Divisors. arXiv:1307.6375 (2013).

  41. H. Grauert and R. Remmert. Plurisubharmonische Funktionen in komplexen Räumen. Math. Z., 65 (1956), 175194

  42. P. A. Griffiths. Entire Holomorphic Mappings in One and Several Complex Variables (A. of Mathematics Studies, ed.). Princeton University Press, Princeton (1976).

  43. S. Greco and C. Traverso. On seminormal schemes. Compos. Math., (3)40 (1980), 325365

  44. H. Guenancia. Kähler–Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor (2012) (to appear in Ann. Inst. Fourier, arXiv:1201.0952)

  45. H. Guenancia. Kähler–Einstein metrics with cone singularities on klt pairs. Int. J. Math., 24 (2013)

  46. H. Guenancia and D. Wu. On the boundary behaviour of Kähler–Einstein metrics of log canonical pairs (in preparation)

  47. V. Guedj and A. Zeriahi. Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal., (4)15 (2005), 607639

  48. V. Guedj and A. Zeriahi. The weighted Monge–Ampère energy of quasi plurisubharmonic functions. J. Funct. Anal., 250 (2007), 442482

  49. J. H. Hubbard and S. Koch. An analytic construction of the Deligne–Mumford compactification of the moduli space of curves. arXiv:1301.0062 (2013).

  50. L. Hörmander. Notions of Convexity. Birkhäuser, Basel (1994).

  51. T. Jeffres, R. Mazzeo and Y. Rubinstein. Kähler–Einstein metrics with edge singularities (2011) (to appear in Ann. Math., arXiv:1105.5216, with an appendix by C. Li and Y. Rubinstein)

  52. J. Kollár et al. Flips and Abundance for Algebraic Threefolds. Société Mathématique de France, Paris. In: Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, August 1991, Astérisque No. 211 (1992).

  53. K. Karu. Minimal models and boundedness of stable varieties. J. Algebraic Geom., (1)9 (2000), 93109

  54. J. Kollár and S. Mori. Birational geometry of algebraic varieties. In: Cambridge Tracts in Mathematics, Vol. 134. Cambridge University Press, Cambridge (1998) (with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original).

  55. R. Kobayashi. Kähler–Einstein metric on an open algebraic manifolds. Osaka 1. Math., 21 (1984), 399418

  56. J. Kollár. Book on Moduli of Surfaces (ongoing project, avalaible at the author’s webpage https://web.math.princeton.edu/kollar/book/chap3.pdf).

  57. J. Kollár. Moduli of Varieties of General Type. arXiv:1008.0621 (2010).

  58. S. J. Kovács. Singularities of stable varieties (2012) (to appear in Handbook of Moduli, arXiv:1102.1240).

  59. J. Kollár and N. I. Shepherd-Barron. Threefolds and deformations of surface singularities. Invent. Math., (2)91 (1988), 299338

  60. S. J. Kovács, K. Schwede and K. E. Smith. The canonical sheaf of Du Bois singularities. Adv. Math., (4)224 (2010), 16181640

  61. A. Langer. Logarithmic Orbifold Euler Numbers of Surfaces with Applications. arXiv:0012180 (2000).

  62. R. Lazarsfeld. Positivity in Algebraic Geometry II. Springer, New York (2004).

  63. M. Miyanishi. On the affine-ruledness of algebraic varieties. Algebraic geometry. Proceedings of the Japan–France Conference, Tokyo and Kyoto 1982. In: Lecture Notes in Mathematics, Vol. 1016 (1983), pp. 449–485.

  64. N. Mok and S.-T. Yau. Completeness of the Kähler–Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions. In: The Mathematical Heritage of Henri Poincaré, Part 1 (Bloomington, Ind., 1980). Proceedings of the Symposium on Pure Mathematics, Vol. 39. American Mathematical Society, Providence, RI (1983), p. 4159.

  65. Y. Odaka. The Calabi Conjecture and K-stability. arXiv:1010.3597 (2011).

  66. Y. Odaka. On the Moduli of Kahler–Einstein Fano Manifolds. arXiv:1211.4833 (2013).

  67. Y. Odaka. The GIT-stability of polarised varieties via discrepancy. Ann. Math., (2)177 (2013), 645661

  68. Y. Odaka, C. Spotti and S. Sun. Compact Moduli Spaces of Del Pezzo Surfaces and Kähler–Einstein Metrics. arXiv:1210.0858 (2012).

  69. M. Păun. Regularity properties of the degenerate Monge–Ampère equations on compact Kähler manifolds. Chin. Ann. Math. Ser. B, (6)29 (2008), 623630

  70. D. H. Phong and J. Sturm. Scalar curvature, moment maps, and the Deligne pairing. Am. J. Math., (3)126 (2004), 693712

  71. G. Schumacher. Positivity of Relative Canonical Bundles and Applications. arXiv:1201.2930 (2012).

  72. Y.-T. Siu. Lectures on Hermitian–Einstein Metrics for Stable Bundles and Kähler–Einstein Metrics. Birkhäuser, Basel (1987).

  73. J. Song. Riemannian Geometry of Kähler–Einstein currents. arXiv:1404.0445 (2014).

  74. G. Tian. K-stability and Kähler–Einstein Metrics. arXiv:1211.4669 (2013).

  75. C. Traverso. Seminormality and Picard group. Ann. Scuola Norm. Sup. Pisa (3), 24 (1970), 585595

  76. H. Tsuji. A characterization of ball quotients with smooth boundary. Duke Math. J., (2)57 (1988), 537553

  77. H. Tsuji. Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type. Math. Ann., (1)281 (1988), 123133

  78. G. Tian and S.-T. Yau. Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Adv. Ser. Math. Phys. 1, 1 (1987), 574628 (mathematical aspects of string theory, San Diego, California, 1986)

  79. G. Tian and S.-T. Yau. Complete Kähler manifolds with zero Ricci curvature. I. J. Am. Math. Soc., (3)3 (1990), 579609

  80. J. Varouchas. Kähler spaces and proper open morphisms. Math. Ann., (1)283 (1989), 1352

  81. E. Viehweg. Quasi-projective moduli for polarized manifolds. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 30. Springer-Verlag, Berlin (1995).

  82. D. Wu. Kähler–Einstein metrics of negative Ricci curvature on general quasi-projective manifolds. Commun. Anal. Geom., (2)16 (2008), 395435

  83. D. Wu. Good Kähler metrics with prescribed singularities. Asian J. Math., (1)13 (2009), 131150

  84. S.-T. Yau. Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math., 28 (1975), 201228

  85. S.-T. Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Commun. Pure Appl. Math., 31 (1978), 339411

  86. S.-T. Yau. A splitting theorem and an algebraic geometric characterization of locally Hermitian symmetric spaces. Commun. Anal. Geom., (3–4)1 (1993), 473486

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Guenancia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berman, R.J., Guenancia, H. Kähler–Einstein Metrics on Stable Varieties and log Canonical Pairs. Geom. Funct. Anal. 24, 1683–1730 (2014). https://doi.org/10.1007/s00039-014-0301-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-014-0301-8

Keywords

Navigation