Skip to main content
Log in

Representations of classical Lie groups and quantized free convolution

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We study the decompositions into irreducible components of tensor products and restrictions of irreducible representations for all series of classical Lie groups as the rank of the group goes to infinity. We prove the Law of Large Numbers for the random counting measures describing the decomposition. This leads to two operations on measures which are deformations of the notions of the free convolution and the free projection. We further prove that if one replaces counting measures with others coming from the work of Perelomov and Popov on the higher order Casimir operators for classical groups, then the operations on the measures turn into the free convolution and projection themselves. We also explain the relation between our results and limit shape theorems for uniformly random lozenge tilings with and without axial symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.I. Ahiezer and M. Krein Some Questions in the Theory of Moments. American Mathematical Society, Providence (1962).

  2. Aissen M., Edrei A., Schoenberg I.J., Whitney A.: On the generating functions of totally positive sequences. Proceedings of the National Academy of Sciences USA, (37(5), 303–307 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Bercovici and D. Voiculescu Free convolution of measures with unbounded support. Indiana University Mathematics Journal, (3)42 (1993), 733–773.

  4. P. Biane Representations of unitary groups and free convolution. Publications of the Research Institute for Mathematical Sciences, 31 (1995), 63–79.

  5. P. Biane Representations of symmetric groups and free probability. Advances in Mathematics, (1)138 (1998), 126–181.

  6. A. Borodin, A. Bufetov and G. Olshanski Limit shapes for growing extreme characters of U(∞). Annals of Applied Probability (2015, to appear). arXiv:1311.5697.

  7. A. Borodin and P. Ferrari Anisotropic growth of random surfaces in 2 + 1 dimensions. Communications in Mathematical Physics, (2)325 (2014), 603–684. arXiv:0804.3035.

  8. A. Borodin and V. Gorin Shuffling algorithm for boxed plane partitions. Advances in Mathematics, (6)220 (2009), 1739–1770. arXiv:0804.3071.

  9. A. Borodin and V. Gorin, Lectures on Integrable Probability (2012). arXiv:1212.3351.

  10. A. Borodin, V. Gorin and E. Rains q-Distributions on boxed plane partitions. Selecta Mathematica, New Series, (4)16 (2010), 731–789. arXiv:0905.0679.

  11. A. Borodin and J. Kuan Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Advances in Mathematics, (3)219 (2008), 894–931. arXiv:0712.1848.

  12. A. Borodin and J. Kuan Random surface growth with a wall and Plancherel measures for O(∞). Communications on Pure and Applied Mathematics, (7)63 (2010), 831–894. arXiv:0904.2607.

  13. A. Borodin and G. Olshanski The boundary of the Gelfand–Tsetlin graph: a new approach. Advances in Mathematics, (4–6)230 (2012), 1738–1779. arXiv:1109.1412.

  14. A. Borodin and G. Olshanski The Young Bouquet and its Boundary. Moscow Mathematical Journal, (2)13 (2013), 193–232. arXiv:1110.4458.

  15. A. Borodin and L. Petrov Integrable probability: from representation theory to Macdonald processes. Probability Surveys, 11 (2014), 1–58. arXiv:1310.8007.

  16. R.P. Boyer Infinite traces of AF-algebras and characters of U(∞), Journal of Operator Theory, 9 (1983), 205–236.

  17. R.P. Boyer Characters and factor representations of the infinite dimensional classical groups. Journal of Operator Theory, 28 (1992), 281–307.

  18. A. Bufetov Kerov’s interlacing sequences and random matrices. Journal of Mathematical Physics, 54 (2013), 113302. arXiv:1211.1507.

  19. H. Cohn, R. Kenyon, and J. Propp A variational principle for domino tilings. Journal of American Mathematical Socirty, (2)14 (2001), 297–346. arXiv:math/0008220.

  20. H. Cohn, M. Larsen, and J. Propp The shape of a typical boxed plane partition. New York Journal of Mathematics, 4 (1998), 137–165.

  21. B. Collins and P. Sniady New scaling of Itzykson-Zuber integrals. Annales de l’Institut Henri Poincare (B) Probability and Statistics, (2)43 (2007), 139–146. arXiv:math/0505664.

  22. B. Collins and P. Śniady Asymptotic fluctuations of representations of the unitary groups (2009). arXiv:0911.5546.

  23. P. Diaconis and D. Freedman, The Markov moment problem and de Finettis theorem: Part I. Mathematische Zeitschrift, (1)247 (2004), 183–199.

  24. A. Edrei On the generating function of a doubly infinite, totally positive sequence. Transactions of the American Mathematical Society, 74 (1953), 367–383.

  25. W. Fulton and J. Harris Representation Theory: A First Course. Springer, New York (1991).

  26. A. Gnedin, V. Gorin, and S. Kerov Block characters of the symmetric groups. Journal of Algebraic Combinatorics, (1)38 (2013), 79–101. arXiv:1108.5044.

  27. V. Gorin Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Functional Analysis and Its Applications, (3)42 (2008), 180–197. arXiv:0708.2349.

  28. V. Gorin and G. Panova Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory. Annals of Probability (2013, to appear). arXiv:1301.0634.

  29. M.D. Gould Characteristic identities for semi-simple Lie algebras. Journal of the Australian Mathematical Society Series B, 26 (1985), 257–283.

  30. A. Guionnet and M. Maïda A Fourier view on the R-transform and related asymptotics of spherical integrals. Journal of Functional Analysis, (2)222 (2005), 435–490. arXiv:math/0406121.

  31. V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations. Inventiones Mathematicae, (3)67 (1982), 515–538.

  32. Harish-Chandra Differential operators on a semisimple Lie algebra. American Journal of Mathematics, 79 (1957), 87–120.

  33. Harish-Chandra. Fourier transforms on a semisimple Lie algebra. I. American Journal of Mathematics, 79 (1957), 193–257.

  34. G.J. Heckmann Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Inventiones Mathematicae, (2)67 (1982), 333–356.

  35. B. Hough and Y. Jiang Asymptotic mixing time analysis of a random walk on the orthogonal group (2012). arXiv:1211.2031.

  36. C. Itzykson and J.B. Zuber, The planar approximation. II. Journal of Mathematical Physics, (3)21 (1980), 411–421.

  37. R. Kenyon Height fluctuations in the honeycomb dimer model. Communications in Mathematical Physics, (3)281 (2008), 675–709. arXiv:math-ph/0405052.

  38. R. Kenyon and A. Okounkov Limit shapes and Burgers equation. Acta Mathematica, (2)199 (2007), 263–302. arXiv:math-ph/0507007.

  39. R. Kenyon, A. Okounkov and S. Sheffield Dimers and amoebae. Annals of Mathematics, 163 (2006), 1019–1056. arXiv:math-ph/0311005.

  40. S. Kerov Transition probabilities of continual Young diagrams and Markov moment problem, Funktsion. Anal. i Prilozhen, (2)27 (1993), 32–49 (English translation: Funct. Anal. Appl. 27 (1993), 104–117).

  41. S. Kerov Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis. American Mathematical Society, Providence (2003).

  42. S. Kerov, A. Okounkov and G. Olshanski The boundary of Young graph with Jack edge multiplicities. International Mathematics Research Notices, (4) (1998), 173–199. arXiv:q-alg/9703037.

  43. A.A. Kirillov A remark on the Gelfand-Tsetlin patterns for symplectic groups. Journal of Geometry and Physics, (3)5 (1989), 473–482.

  44. A.A. Kirillov Lectures on the Orbit Method. American Mathematical Society, Providence (2004)

  45. M.G. Krein and A.A. Nudelman, The Markov Moment Problem and Extremal Problems. American Mathematical Society, Providence (1977).

  46. D.E. Littlewood and A.R. Richardson Group characters and algebra. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character (The Royal Society), (721–730)233 (1934), 99–141.

  47. B.F. Logan and L.A. Shepp A variational problem for random Young tableaux. Advances in Mathematics, (2)26 (1977), 206–222.

  48. I.G. Macdonald Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1999).

  49. S. Mkrtchyan Plane partitions with 2-periodic weights. Letters in Mathematical Physics, (9)104 (2014), 1053–1078. arXiv:1309.4825.

  50. A. Molev Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs Vol. 143. American Mathematical Society, Providence (2007).

  51. A. Molev, M. Nazarov and G. Olshanskii Yangians and classical Lie algebras. Russian Mathematical Surveys, 51 (1996), 205–282.

  52. A. Nica and R. Speicher Lectures on the Combinatorics of Free Probability. Cambridge University Press, Cambridge (2006).

  53. A. Okounkov and G. Olshanski Asymptotics of Jack polynomials as the number of variables goes to infinity. International Mathematics Research Notices, 13 (1998), 641–682. arXiv:q-alg/9709011.

  54. A. Okounkov and G. Olshanski Limits of BC-type orthogonal polynomials as the number of variables goes to infinity. In: Jack, Hall–Littlewood and Macdonald Polynomials, American Mathematical Society Contemporary Mathematics Series, Vol. 417 (2006), pp. 281–318. arXiv:math/0606085.

  55. A. Okounkov and N. Reshetikhin Correlation functions of Schur process with application to local geometry of a random 3-dimensional Young diagram. Journal of American Mathemattical Society, 16 (2003), 581–603. arXiv:math.CO/0107056.

  56. G. Olshanski Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter, International Mathematics Research Notices, (6) 2010, 1102–1166. arXiv:0902.3395.

  57. A.M. Perelomov and V.S. Popov, Casimir operators for semisimple Lie groups. Mathematics of the USSR—Izvestija, 2 (1968), 1313–1335.

  58. L. Petrov Asymptotics of random Lozenge tilings via Gelfand–Tsetlin schemes. Probability Theory and Related Fields, (3)160 (2014), 429–487. arXiv:1202.3901.

  59. L. Petrov The boundary of the Gelfand–Tsetlin graph: new proof of Borodin–Olshanski’s formula, and its q-analogue. Moscow Mathematical Journal (2015, to appear). arXiv:1208.3443.

  60. V.S. Popov New expressions for the invariant operators of the unitary groups. Theoretical and Mathematical Physics, (3)29 1976, 1122–1130.

  61. V.S. Popov Invariant operators for the classical groups. Theoretical and Mathematical Physics, (3) 32 (1977), 784–786.

  62. M. Prähofer and H. Spohn Scale invariance of the PNG droplet and the airy process. Journal of Statistical Physics, (5–6)108 (2002), 1071–1106. arXiv:math/0105240.

  63. M.A. Semenov-Tjan-Shanskii A certain property of the Kirillov integral. In: Differential Geometry, Lie Group, and Mechanics, Mat. Ind. Steklov (LOMI), Vol. 37 (1973), pp. 53–65.

  64. R.P. Stanley Enumerative Combinatorics, Vol. 2. Cambridge University Press, Cambridge (1999).

  65. E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abz£hlbar unendlichen sym- metrischen Gruppe. Mathematische Zeitschrift, (1)85 (1964), 40–61.

  66. A.M. Vershik and S.V. Kerov Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tables. Soviet Mathematics Doklady, 18 (1977), 527–531.

  67. A. Vershik and S. Kerov Asymptotic theory of characters of the symmetric group. Functional Analysis and its Applications, (4)15 (1981), 246–255.

  68. A.M. Vershik and S.V. Kerov Characters and factor representations of the inifinite unitary group. Soviet Mathematics Doklady, 26 (1982), 570–574.

  69. D. Voiculescu Représentations factorielles de type II1 de U(∞). Journal de Mathématiques Pures et Appliquées, 55 (1976), 1–20.

  70. D. Voiculescu Symmetries of some reduced free product C*-algebras. In: Operator Algebras and Their Connections with Topology and Ergodic Theory (Busteni, 1983), Lecture Notes in Mathematics, Vol. 1132. Springer, Berlin (1985), pp. 556–588.

  71. D. Voiculescu Addition of certain non-commuting random variables. Journal of Functional Analysis 66 (1986), 323–346.

  72. D. Voiculescu Limit laws for random matrices and free products. Inventiones Mathematicae, 104 (1991), 201–220.

  73. D. Voiculescu, K. Dykema, and A. Nica Free Random Variables, CRM Monograph Series, Vol. 1, American Mathematical Society, Providence (1992).

  74. H. Weyl The Classical Groups: Their Invariants and Representations. Princeton University Press, Princeton (1939).

  75. D.P. Zhelobenko Compact Lie Groups and Their Representations, Translations of Mathematical Monographs, Vol. 40. AMS, Providence (1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Gorin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bufetov, A., Gorin, V. Representations of classical Lie groups and quantized free convolution. Geom. Funct. Anal. 25, 763–814 (2015). https://doi.org/10.1007/s00039-015-0323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0323-x

Keywords

Navigation