Skip to main content
Log in

Metric Inequalities with Scalar Curvature

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We establish several inequalities for manifolds with positive scalar curvature and, more generally, for the scalar curvature bounded from below. In so far as geometry is concerned these inequalities appear as generalisations of the classical bounds on the distances between conjugates points in surfaces with positive sectional curvatures. The techniques of our proofs is based on the Schoen–Yau descent method via minimal hypersurfaces, while the overall logic of our arguments is inspired by and closely related to the torus splitting argument in Novikov’s proof of the topological invariance of the rational Pontryagin classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, Sebastiao: Minimal Hypersurfaces of a Positive Scalar Curvature. Math. Z. 190, 73–82 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren Jr., F.J.: Optimal isoperimetric inequalities. Indiana Univ. Math. J. 35, 451–547 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lars Andersson, Mingliang Cai and Gregory J. Galloway. Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré (1)9 (2008), 1–33

  4. Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras. Astérisque 32–3, 43–72 (1976)

    MathSciNet  MATH  Google Scholar 

  5. R. Bamler. A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature. Mathematical Research Letters Volume 23 (2016). Number 2, Pages 325 - 337

  6. Boris Botvinnik, Johannes Ebert, Oscar Randal-Williams. Infinite loop spaces and positive scalar curvature, Inventiones mathematicae (3)209 (2017), 749–835

  7. Brunnbauer, M., Hanke, B.: Large and small group homology. J. Topology 3, 463–486 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourguignon, Jean-Pierre, Hijazi, Oussama, Milhorat, Jean-Louis: Andrei Moroianu and Sergiu Moroianu. A Spinorial Approach to Riemannian and Conformal Geometry, EMS Monographs in Mathematics (2015)

    Google Scholar 

  9. S Brendle, F.C. Marques, A. Neves. Deformations of the hemisphere that increase scalar curvature, arXiv:1004.3088[math.DG]

  10. Dranishnikov, A.N.: Steven C. Ferry and Shmuel Weinberger. Large Riemannian manifolds which are flexible. Annals of Mathematics 157, 919–938 (2003)

    Article  MathSciNet  Google Scholar 

  11. A. Dranishnikov. Asymptotic topology. Russian Math. Surveys (6)55 (2000), 71–116

  12. Dranishnikov, A.N.: On hypereuclidean manifolds. Geom. Dedicata 117, 215–231 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33, 199–211 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gromov, M., Lawson, B.: Spin and Scalar Curvature in the Presence of a Fundamental Group I. Annals of Mathematics 111, 209–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gromov, M., Lawson, H.B.: The classification. of simply connected. manifolds of positive scalar curvature. Annals of Mathematics 11, 423–434 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Etudes Sci. Publ. Math. 58, 83–196 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gromov, M.: Filling Riemannian manifolds. J. Differential Geom. 18(1), 1–147 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Gromov. Partial differential relations. Springer (1986)

  19. M. Gromov. Positive curvature, macroscopic dimension, spectral gaps and higher signatures. In: Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993) ,volume 132 of Progr. Math., Birkhäuser, (1996), pp. 1–213

  20. M. Gromov. Hilbert volume in metric spaces. Part 1. Cent. Eur. J. Math. (2)10(2012), 371–400

  21. M. Gromov, Dirac and Plateau billiards in domains with corners. Central European Journal of Mathematics (8)12 (2014), 1109–1156

  22. M. Gromov. M. Plateau-Stein manifolds, Cent. Eur. J. Math., 12(7), 923–951 (2014)

  23. M. Gromov. 101 Questions, Problems and Conjectures around Scalar Curvature. http://www.ihes.fr/~gromov/PDF/101-problemsOct1-2017.pdf (2017)

  24. S. Goette, U. Semmelmann. Spin\(^c\) Structures and Scalar Curvature Estimates. Annals of Global Analysis and Geometry. (4)20 (2001) pp 301–324

  25. S. Goette and U. Semmelmann. Scalar curvature estimates for compact symmetric spaces. Differential Geom. Appl. (1)16 (2002), 65–78

  26. B. Hanke. Positive scalar curvature, K-area and essentialness, Global Differential Geometry pp 275–302, (2011)

  27. B. Hanke, T. Schick. Enlargeability and index theory. J. Differential Geom. (2)74 (2006), 293–320

  28. Bernhard Hanke, Daniel Pape and Thomas Schick. Codimension two index obstructions to positive scalar curvature. Annales de l'institut Fourier (6)65 (2015), 2681–2710

  29. Hitchin, N.: Harmonic spinors. Advances in Math. 14, 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Llarull. Sharp estimates and the Dirac operator. Mathematische AnnalenJanuary (1)310 (1998), 55–71

  31. H.B., Jr Lawson and M.-L. Michelsohn. Approximation by positive mean curvature immersions: frizzing. Inventiones mathematicae 77 (1984), 421–426

  32. Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313, 385–407 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Lohkamp. The Higher Dimensional Positive Mass Theorem II, arXiv:1612.07505 (2016)

  34. Donovan McFeron, Gábor Székelyhidi. On the positive mass theorem for manifolds with corners, Communications in Mathematical Physics (2)313 (2012)

  35. P. Miao. Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys., (6)6 (2002), 1163–1182

  36. M. Min-Oo. Scalar curvature rigidity of certain symmetric spaces. In Geometry, topology, and dynamics (Montreal, PQ, 1995), volume 15 of CRM Proc. Lecture Notes , pages 127–136

  37. Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285, 527–539 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Min-Oo. K-Area, mass and asymptotic geometry, http://ms.mcmaster.ca/minoo/mypapers/crm_es.pdf (2002)

  39. N. Smale. Generic regularity of homologically area minimizing hyper surfaces in eight-dimensional mani- folds. Comm. Anal. Geom. (2)1 (1993), 217–228

  40. J. Rosenberg. Manifolds of positive scalar curvature: a progress report. In: Surveys on Differential Geometry, vol. XI: Metric and Comparison Geometry, International Press (2007)

  41. Thomas Schick. A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture. Topology (6)37 (1998)

  42. Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds of non-negative scalar curvature. Ann. of Math. 110, 127–142 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28, 159–183 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  44. Richard Schoen, Shing-Tung Yau. Positive Scalar Curvature and Minimal Hypersurface Singularities, arXiv:1704.05490 (2017)

  45. S. Stolz. Manifolds of a positive scalar curvature, in: T. Farrell etal. (eds.), Topology of high dimensional manifolds, ICTP Lect. Notes, vol. 9, 665–706. 1.1, Trieste (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misha Gromov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, M. Metric Inequalities with Scalar Curvature. Geom. Funct. Anal. 28, 645–726 (2018). https://doi.org/10.1007/s00039-018-0453-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-018-0453-z

Navigation