Skip to main content
Log in

Sparsity in Time-Frequency Representations

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We consider signals and operators in finite dimension which have sparse time-frequency representations. As main result we show that an S-sparse Gabor representation in ℂn with respect to a random unimodular window can be recovered by Basis Pursuit with high probability provided that SCn/log (n). Our results are applicable to the channel estimation problem in wireless communications and they establish the usefulness of a class of measurement matrices for compressive sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inf. Theory 26(3), 350–354 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bello, P.: Characterization of randomly time-variant linear channels. IEEE Trans. Commun. 11, 360–393 (1963)

    Article  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  5. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  Google Scholar 

  6. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

  7. Candès, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  Google Scholar 

  8. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by Basis Pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  10. Correia, L.M.: Wireless Flexible Personalized Communications. Wiley, New York (2001)

    Google Scholar 

  11. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  13. Donoho, D., Tsaig, Y.: Fast solution of 1-norm minimization problems when the solution may be sparse. IEEE Trans. Inform. Theory 54(11), 4789–4812 (2008)

    Article  Google Scholar 

  14. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  15. Feichtinger, H.G., Kozek, W., Luef, F.: Gabor analysis over finite Abelian groups. Appl. Comput. Harmon. Anal. 26(2), 230–248 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fuchs, J.-J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inform. Theory 50(6), 1341–1344 (2004)

    Article  MathSciNet  Google Scholar 

  17. Grip, N., Pfander, G.E.: A discrete model for the efficient analysis of time-varying narrowband communication channels. Multidimens. Syst. Signal Process. 19(1), 3–40 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  19. Gröchenig, K., Pötscher, B., Rauhut, H.: Learning trigonometric polynomials from random samples and exponential inequalities for eigenvalues of random matrices. Preprint (2007)

  20. Herman, M., Strohmer, T.: High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)

    Article  Google Scholar 

  21. Krahmer, F., Pfander, G.E., Rashkov, P.: Uncertainty in time-frequency representations on finite Abelian groups and applications. Appl. Comput. Harmon. Anal. 25(2), 209–225 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kunis, S., Rauhut, H.: Random sampling of sparse trigonometric polynomials. II. Orthogonal matching pursuit versus basis pursuit. Found. Comput. Math. 8(6), 737–763 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lawrence, J., Pfander, G., Walnut, D.: Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl. 11(6), 715–726 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Middleton, D.: Channel modeling and threshold signal processing in underwater acoustics: An analytical overview. IEEE J. Oceanic Eng. 12(1), 4–28 (1987)

    Article  MathSciNet  Google Scholar 

  25. Pätzold, M.: Mobile Fading Channels: Modelling, Analysis and Simulation. Wiley, New York (2001)

    Google Scholar 

  26. Pfander, G.E., Rauhut, H., Tanner, J.: Identification of matrices having a sparse representation. IEEE Trans. Signal Process. 56(11), 5376–5388 (2008)

    Article  MathSciNet  Google Scholar 

  27. Rauhut, H.: Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal. 22(1), 16–42 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rauhut, H., Schnass, K., Vandergheynst, P.: Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54(5), 2210–2219 (2008)

    Article  MathSciNet  Google Scholar 

  29. Riordan, J.: An Introduction to Combinatorial Analysis. Wiley, New York (1958)

    MATH  Google Scholar 

  30. Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61(8), 1025–1045 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stojanovic, M.: Underwater acoustic communications. In: Encyclopedia of Electrical and Electronics Engineering, vol. 22, pp. 688–698. Wiley, New York (1999)

    Google Scholar 

  32. Strohmer, T.: Numerical algorithms for discrete Gabor expansions. In: Gabor Analysis and Algorithms. Applied and Numerical Harmonic Analysis, pp. 267–294. Birkhäuser, Boston (1998)

    Google Scholar 

  33. Strohmer, T., Heath, R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tauböck, G., Hlawatsch, F., Rauhut, H.: Compressive estimation of double selective channels: exploiting channel sparsity to improve spectral efficiency in multicarrier transmissions. Preprint (2009)

  35. Tropp, J.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  36. Tropp, J.A.: Recovery of short, complex linear combinations via l 1 minimization. IEEE Trans. Inf. Theory 51(4), 1568–1570 (2005)

    Article  MathSciNet  Google Scholar 

  37. Tropp, J.A.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25(1), 1–24 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Rauhut.

Additional information

Communicated by Thomas Strohmer.

H.R. acknowledges support by the European Union’s Human Potential Programme through an Individual Marie Curie Fellowship, contract number MEIF CT-2006-022811.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfander, G.E., Rauhut, H. Sparsity in Time-Frequency Representations. J Fourier Anal Appl 16, 233–260 (2010). https://doi.org/10.1007/s00041-009-9086-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-009-9086-9

Keywords

Mathematics Subject Classification (2000)

Navigation