Skip to main content
Log in

Bounded Extremal and Cauchy–Laplace Problems on the Sphere and Shell

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this work, we develop a theory of approximating general vector fields on subsets of the sphere in ℝn by harmonic gradients from the Hardy space H p of the ball, 1<p<∞. This theory is constructive for p=2, enabling us to solve approximate recovery problems for harmonic functions from incomplete boundary values. An application is given to Dirichlet–Neumann inverse problems for n=3, which are of practical importance in medical engineering. The method is illustrated by two numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, San Diego (1975)

    MATH  Google Scholar 

  2. Alpay, D., Baratchart, L., Leblond, J.: Some extremal problems linked with identification from partial frequency data. In: Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-dimensional Systems, Sophia-Antipolis, 1992. Lecture Notes in Control and Inform. Sci., vol. 185, pp. 563–573. Springer, Berlin (1993)

    Chapter  Google Scholar 

  3. Arcozzi, N.: Riesz transforms on compact Lie groups, spheres and Gauss space. Ark. Mat. 36(2), 201–231 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arcozzi, N., Li, X.: Riesz transforms on spheres. Math. Res. Lett. 4(2–3), 401–412 (1997)

    MATH  MathSciNet  Google Scholar 

  5. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  6. Baratchart, L., Leblond, J.: Hardy approximation to L p functions on subsets of the circle with 1≤p<∞. Constr. Approx. 14(1), 41–56 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baratchart, L., Leblond, J., Marmorat, J.-P.: Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices. Electron. Trans. Numer. Anal. 25, 41–53 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Baratchart, L., Leblond, J., Partington, J.R.: Hardy approximation to L functions on subsets of the circle. Constr. Approx. 12, 423–436 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Bers, L., John, F., Schechter, M.: Partial Differential Equations. Lectures in Applied Mathematics, vol. 3A. Am. Math. Soc., Providence (1979)

    MATH  Google Scholar 

  10. Bourgain, J., Wolff, T.: A remark on gradients of harmonic functions in dimension d≥3. Colloq. Math. 60/61, 253–260 (1990)

    MathSciNet  Google Scholar 

  11. Chalendar, I., Leblond, J., Partington, J.R.: Approximation problems in some holomorphic spaces, with applications. In: Systems, Approximation, Singular Integral Operators, and Related Topics, Bordeaux, 2000. Oper. Theory Adv. Appl., vol. 129, pp. 143–168. Birkhäuser, Basel (2001)

    Google Scholar 

  12. Chalendar, I., Partington, J.R.: Constrained approximation and invariant subspaces. J. Math. Anal. Appl. 280(1), 176–187 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chalendar, I., Partington, J.R., Smith, M.: Approximation in reflexive Banach spaces and applications to the invariant subspace problem. Proc. Am. Math. Soc. 132(4), 1133–1142 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dautray, R., Lions, J.-L.: Analyse Mathématique et Calcul Numérique, vol. 2. Springer, Berlin (1990)

    Google Scholar 

  15. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1. Springer, Berlin (1990)

    Google Scholar 

  16. Hämäläinen, M., Hari, R., Ilmoniemi, J., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Modern Phys. 65(2), 413–497 (1993)

    Article  Google Scholar 

  17. Isakov, V.: Inverse Source Problems. Mathematical Surveys and Monographs, vol. 34. Am. Math. Soc., Providence (1990)

    MATH  Google Scholar 

  18. Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: A common formalism for the integral formulations of the forward EEG problem. IEEE Trans. Med. Imag. 24, 12–28 (2005)

    Article  Google Scholar 

  19. Leblond, J., Mahjoub, M., Partington, J.R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results. J. Inverse Ill-Posed Probl. 14(2), 189–204 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Leblond, J., Partington, J.R.: Constrained approximation and interpolation in Hilbert function spaces. J. Math. Anal. Appl. 234(2), 500–513 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lions, J.-L., Magenes, E.: Problèmes aux Limites non Homogènes et Applications, vol. 1. Dunod, Paris (1971)

    MATH  Google Scholar 

  22. Lorentz, G.G.: Approximation of Functions. Chelsea, New York (1986)

    MATH  Google Scholar 

  23. Partington, J.R.: Interpolation, Identification, and Sampling. London Mathematical Society Monographs. New Series, vol. 17. Clarendon, Oxford University Press, London (1997)

    MATH  Google Scholar 

  24. Smith, M.: The spectral theory of Toeplitz operators applied to approximation problems in Hilbert spaces. Constr. Approx. 22(1), 47–65 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  26. Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993). Monographs in Harmonic Analysis, III

    MATH  Google Scholar 

  27. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  28. Torchinsky, A.: Real-variable Methods in Harmonic Analysis. Academic Press, San Diego (1986)

    MATH  Google Scholar 

  29. Wang, W.: A remark on gradients of harmonic functions. Rev. Mat. Iberoamer. 11(2), 227–245 (1995)

    MATH  Google Scholar 

  30. Wolff, T.: Counterexamples with harmonic gradients in R 3. In: Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991). Math. Ser., vol. 42, pp. 321–384. Princeton University Press, Princeton (1995)

    Google Scholar 

  31. Ziemer, W.P.: Weakly Differentiable Functions. Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Partington.

Additional information

Communicated by Carlos Kenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atfeh, B., Baratchart, L., Leblond, J. et al. Bounded Extremal and Cauchy–Laplace Problems on the Sphere and Shell. J Fourier Anal Appl 16, 177–203 (2010). https://doi.org/10.1007/s00041-009-9110-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-009-9110-0

Mathematics Subject Classification (2000)

Navigation