Skip to main content
Log in

Microwave-induced CAN promoted atom-economic synthesis of 1H-benzo[b]xanthene and 4H-benzo[g]chromene derivatives of N-allyl quinolone and their antimicrobial activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Some new 1H-benzo[b]xanthene and 4H-benzo[g]chromene derivatives of N-allyl quinolone were efficiently synthesized via microwave-induced one-pot three component reaction of N-allyl quinolones, 2-hydroxy-1,4-naphthoquinone and cyclic β-diketones/malononitrile, and iso-propylcyanoacetate in the presence of catalytic amount of ceric ammonium nitrate under solvent-free condition. This methodology allowed us to achieve the desired products in excellent yields in a very short time without the use of solvent. The % atom economy was calculated for all the newly synthesized compounds and found in the range of 92–96 %. Titled derivatives were elucidated by 1H NMR, 13C NMR, FT-IR, elemental analysis, and mass spectral data as well as tested against a panel of pathogenic strains of bacteria and fungi using by microdilution minimum inhibitory concentration method. The structural activity relationship analysis demonstrated that electronic influence and lipophilicity of different groups make much difference in the antimicrobial potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Ahmed EA, Mohamed MAA, El-Saghier AMM (2012) One-pot synthesis of dihydropyrimidin-2(1H)-ones catalyzed by ceric(IV) ammonium nitrate (CAN) under solvent free conditions. J Am Sci 8:815–818. http://www.jofamericanscience.org.122

    Google Scholar 

  • Chen LG, Yang LL, Wang CC (2008) Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem Toxicol 46:688–693. doi:10.1016/j.fct.2007.09.096

    Article  PubMed  CAS  Google Scholar 

  • China Raju B, Nageswara Rao R, Suman P et al (2011) Synthesis, structure–activity relationship of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential antimycobacterial and anticancer agents. Bioorg Med Chem Lett 21:2855–2859. doi:10.1016/j.bmcl.2011.03.079

    Article  PubMed  CAS  Google Scholar 

  • Dabiri M, Tisseh ZN, Bazgir A (2010) An efficient three-component synthesis of benzoxanthenes in water. J Heterocycl Chem 47:1062–1065. doi:10.1002/jhet.420

    Article  CAS  Google Scholar 

  • Edmont D, Rocher R, Plisson C, Chenault J (2000) Synthesis and evaluation of quinoline carboxyguanidines as antidiabetic agents. Bioorg Med Chem Lett 10:1831–1834. doi:10.1016/S0960-894X(00)00354-1

    Article  PubMed  CAS  Google Scholar 

  • Hafez HN, Hegab MI, Ahmed-Farag IS, El-Gazzar ABA (2008) A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg Med Chem Lett 18:4538–4543. doi:10.1016/j.bmcl.2008.07.042

    Article  PubMed  CAS  Google Scholar 

  • Heeb S, Fletcher MP, Chhabra SR et al (2011) Quinolones: from antibiotics to auto inducers. FEMS Microbiol Rev 35:247–274. doi:10.1111/j.1574-6976.2010.00247.x

    Article  PubMed  CAS  Google Scholar 

  • Hideo T, Teruomi J (1981) [1] Benzopyrano[2,3-b]xanthene derivatives. Jpn Patent 56005480, Sankyo Co., Yokohama

  • Jardosh HH, Patel MP (2011) Lanthanum triflate triggered synthesis of tetrahydroquinazolinone derivatives of N-allyl quinolone and their biological assessment. J Serb Chem Soc. doi:10.2298/JSC120121039J.19

  • Jardosh HH, Patel MP (2012) Microwave-assisted CAN-catalyzed solvent-free synthesis of N-allyl quinolone-based pyrano[4,3-b]chromene and benzopyrano[3,2-c]chromene derivatives and their antimicrobial activity. Med Chem Res. doi:10.1007/s00044-012-0085-z

  • Kathrotiya HG, Patel MP (2011) Microwave-assisted synthesis of 3′-indolyl substituted 4H-chromenes catalyzed by DMAP and their antimicrobial activity. Med Chem Res. doi:10.1007/s00044-011-9861-4

  • Khurana JM, Nand B, Saluja P (2010) DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H-benzo[g]chromenes in aqueous medium. Tetrahedron 66:5637–5641. doi:10.1016/j.tet.2010.05.082

    Article  CAS  Google Scholar 

  • Kidwai M, Misra P, Kumar R, Saxena RK, Gupta R, Bradoo S (1998) Microwave assisted synthesis and antibacterial activity of new quinolone derivatives. Monatsh Chem 129:961–965. doi:10.1007/PL00013504

    CAS  Google Scholar 

  • Kumar A, Sharma S, Maurya RA, Sarkar J (2010) Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity. J Comb Chem 12:20–24. doi:10.1021/cc900143h

    Article  PubMed  CAS  Google Scholar 

  • Lambert RW, Martin JA, Merrett JH, Parkes EBK, Thomas GJ (1997) Preparation of pyrimidine nucleosides as thymidine kinase inhibitors and virucides. PCT Int Appl WO9706178

  • Lew A, Krutzik PO, Hart ME, Chamberlin AR (2002) Increasing rates of reaction: microwave-assisted organic synthesis for combinatorial chemistry. J Comb Chem 4:95–105. doi:10.1021/cc010048o

    Article  PubMed  CAS  Google Scholar 

  • Limon MC, Rodriguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. Appl Microbiol Biotechnol 87:21–29. doi:10.1007/s00253-010-2551-1

    Article  PubMed  CAS  Google Scholar 

  • Lucero B, Regina C, Frugulhetti I et al (2006) Synthesis and anti-HSV-1 activity of quinolonic acyclovir analogues. Bioorg Med Chem Lett 16:1010–1013. doi:10.1016/j.bmcl.2005.10.111

    Article  PubMed  CAS  Google Scholar 

  • Makawana JA, Mungra DC, Patel MP, Patel RG (2011) Microwave assisted synthesis and antimicrobial evaluation of new fused pyran derivatives bearing 2-morpholinoquinoline nucleus. Bioorg Med Chem Lett 21:6166–6169. doi:10.1016/j.bmcl.2011.07.123

    Article  PubMed  CAS  Google Scholar 

  • Manners GD, Jurd L (1977) New natural products from marine borer resistant woods. A review. J Agric Food Chem 25:726–730. doi:10.1021/jf60212a033

    Article  CAS  Google Scholar 

  • Mungra DC, Patel MP, Rajani DP, Patel RG (2011) Synthesis and identification of β-aryloxyquinolines and their pyrano[3,2-c]chromene derivatives as a new class of antimicrobial and antituberculosis agents. Eur J Med Chem 46:4192–4200. doi:10.1016/j.ejmech.2011.06.022

    Article  PubMed  CAS  Google Scholar 

  • Nair V, Deepthi A (2007) Cerium(IV) ammonium nitrate a versatile single-electron oxidant. Chem Rev 107:1862–1891. doi:10.1021/cr068408n

    Article  PubMed  CAS  Google Scholar 

  • Nair V, Balagopal L, Rajan R, Mathew J (2004) Recent advances in synthetic transformations mediated by cerium(IV) ammonium nitrate. Acc Chem Res 37:21–30. doi:10.1021/ar030002z

    Article  PubMed  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (NCCLS) (2002) Performance standards for antimicrobial susceptibility testing: twelfth informational supplement. ISBN 1-56238-454-6, M100-S12, M7

  • O’Donnell F, Smyth TJP, Ramachandran VN, Smyth WF (2010) A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int J Antimicrob Agents 35:30–38. doi:10.1016/j.ijantimicag.2009.06.031

    Article  PubMed  Google Scholar 

  • Praveen C, Ayyanar A, Perumal PT (2011) Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones. Bioorg Med Chem Lett 21:4072–4077. doi:10.1016/j.bmcl.2011.04.117

    Article  PubMed  CAS  Google Scholar 

  • Reddy CS, Raghu M, Nagaraj A (2008) Ceric ammonium nitrate (CAN) promoted efficient solid phase synthesis of amide derivatives: a green approach. Indian J Chem B 47:315–318

    Google Scholar 

  • Shaabani A, Ghadari R, Ghasemi S et al (2009) Novel one-pot three- and pseudo-five-component reactions: synthesis of functionalized benzo[g]- and dihydropyrano[2,3-g]chromene derivatives. J Comb Chem 11:956–959. doi:10.1021/cc900101w

    Article  PubMed  CAS  Google Scholar 

  • Shafiee A, Motamedi R, Firuzi O et al (2011) Synthesis and cytotoxic activity of novel benzopyrano[3,2-c]chromene-6,8-dione derivatives. Med Chem Res 20:466–474. doi:10.1007/s00044-010-9340-3

    Article  CAS  Google Scholar 

  • Shaterian HR, Ranjbar M, Azizi K (2011) Synthesis of benzoxanthene derivatives using Brønsted acidic ionic liquids (BAILs), 2-pyrrolidonium hydrogen sulfate and (4-sulfobutyl)tris(4-sulfophenyl)phosphonium hydrogen sulfate. J Mol Liq 162:95–99. doi:10.1016/j.molliq.2011.06.013

    Article  CAS  Google Scholar 

  • Singh MS, Chowdhury S (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv. doi:10.1039/c2ra01056a

  • Singh MS, Nandi GC, Samai S (2012) DABCO-promoted three-component regioselective synthesis of functionalized chromen-5-ones and pyrano[3,2-c]chromen-5-ones via direct annulation of α-oxoketene-N,S-arylaminoacetals under solvent-free conditions. Green Chem 14:447–455. doi:10.1039/c1gc16129f

    Article  CAS  Google Scholar 

  • Soleimani E, Khodaei MM, Koshvandi ATK (2011) The efficient synthesis of 14-alkyl or aryl 14H-dibenzo[a, j]xanthenes catalyzed by bismuth(III)chloride under solvent-free conditions. Chin Chem Lett 22:927–930. doi:10.1016/j.cclet.2011.01.012

    Article  CAS  Google Scholar 

  • Sridharan V, Menendez JC (2010) Cerium(IV) ammonium nitrate as a catalyst in organic synthesis. Chem Rev 110:3805–3849. doi:10.1021/cr100004p

    Article  PubMed  CAS  Google Scholar 

  • Tabarrini O, Massari S, Daelemans D et al (2008) Structure-activity relationship study on anti-HIV 6-desfluoroquinolones. J Med Chem 51:5454–5458. doi:10.1021/jm701585h

    Article  PubMed  CAS  Google Scholar 

  • Thumar NJ, Patel MP (2011) Synthesis and antimicrobial activity of some new N-substituted quinoline derivatives of 1H-pyrazole. Arch Pharm Chem Life Sci 2:91–101. doi:10.1002/ardp.201000010

    Article  Google Scholar 

  • Xia Y, Yang Z, Xia P et al (2003) Antitumor agents. Part 226: synthesis and cytotoxicity of 2-phenyl-4-quinolone acetic acids and their esters. Bioorg Med Chem Lett 13:2891–2893. doi:10.1016/S0960-894X(03)00624-3

    Article  PubMed  CAS  Google Scholar 

  • Yao C, Yu C, Li T, Tu S (2009) An efficient synthesis of 4H-benzo[g]chromene-5,10-dione derivatives through triethylbenzylammonium chloride catalyzed multicomponent reaction under solvent-free conditions. Chin J Chem 27:1989–1994. doi:10.1002/cjoc.200990334

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head, Department of Chemistry, Sardar Patel University, for providing 1H NMR and 13C NMR spectroscopy and research facilities. We are also thankful to the Oxygen Healthcare Research Pvt. Ltd., Ahmedabad, for providing mass spectroscopy facilities, Vaibhav Laboratories, Ahmedabad, Gujarat, India, for the FT-IR; SICART, Vallabh Vidyanagar, for elemental analysis, and Dhanji P. Rajani, Microcare Laboratory, Surat, Gujarat, India for antimicrobial screening of the compounds reported herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish P. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jardosh, H.H., Patel, M.P. Microwave-induced CAN promoted atom-economic synthesis of 1H-benzo[b]xanthene and 4H-benzo[g]chromene derivatives of N-allyl quinolone and their antimicrobial activity. Med Chem Res 22, 2954–2963 (2013). https://doi.org/10.1007/s00044-012-0301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0301-x

Keywords

Navigation