Skip to main content

Advertisement

Log in

In silico molecular docking study of natural compounds on wild and mutated epidermal growth factor receptor

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The role played by overexpression of tyrosine kinase epidermal growth factor receptor (EGFR), the transmembrane receptor central to numerous cellular processes comprising cell migration, adhesion, apoptosis, and cell proliferation, has been highlighted in various cancers such as prostate, breast, lung, and ovarian cancers as well as in mutations in the EGFR kinase domain. Although many therapeutic approaches have targetted EGFR, the mutations occurring in the EGFR kinase domain including L858 EGFR and T790/L858R had led to the amplification of EGFR signals, consequently leading to increased cell proliferation and cell growth. The strategies involving the inhibition of EGFR L858 and T790M have been accredited with limited achievement in addition to being associated with unwanted adverse effects as a result of crosstalk of wild-type EGFR. All current EGFR tyrosine kinase inhibitors have been identified as ATP competitive inhibitors of wild-type EGFR possessing aniline and quinazoline moiety on the ligands skeleton. Our results obtained by performing molecular docking study on Maestro 9.3 molecular docking suite indicated that CID5280343 possesses better energy conformation against wild-type EGFR as well as two mutated EGFR. Moreover, it was discovered in this study that the natural compounds CID72276, CID5280445, CID441794, and CID72277 and InterBioScreen’s library STOCK1N-78657, STOCK1N-78976, and STOCK1N-78847 have better binding conformation against gatekeeper T790M mutated EGFR concluded to be brought about by means of flexible ligands/receptor-based molecular docking protocol. Miraculous features of these compounds are their various pharmacokinetic and pharmacodynamic parameters which were found to be satisfactory as drug-like molecules. This molecular docking study also summarizes docking free energy, protein–ligands interaction profile, and pharmacokinetic and pharmacodynamic parameter of lead molecules which were tremendously helpful in enhancing the activity of these natural compounds against EGFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL (1999) Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol Cell Biol 19:5143–5154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azam M, Seeliger MA, Gray NS, Kuriyan J, Daley GQ (2008) Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat Struct Mol Biol 15:1109–1118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baselga J (2001) The EGFR as a target for anticancer therapy focus on cetuximab. Eur J Cancer 37:16–22

    Article  Google Scholar 

  • Bianco R, Melisi D, Ciardiello F, Tortora G (2006) Key cancer cell signal transduction pathways as therapeutic targets. Eur J Cancer 42:290–294

    Article  CAS  PubMed  Google Scholar 

  • Bonomi P (2003) Erlotinib: a new therapeutic approach for non-small cell lung cancer. Expert Opin Investig Drugs 12:1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Cho JY, Park J (2008) Contribution of natural inhibitors to the understanding of the PI3K/PDK1/PKB pathway in the insulin-mediated intracellular signaling cascade. Int J Mol Sci 9:2217–2230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1:364–369

    Article  PubMed  Google Scholar 

  • Di Lorenzo G, Tortora G, D’Armiento FP, De Rosa G, Staibano S, Autorino R, D’Armiento M, De Laurentiis M, De Placido S, Catalano G (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8:3438–3444

    PubMed  Google Scholar 

  • Efferth T (2011) Natural products as inhibitors of epidermal growth factor receptor. In: Forum on immunopathological diseases and therapeutics, pp 281–301. doi:10.1615/ForumImmunDisTher.2012004386

  • Fridrich D, Teller N, Esselen M, Pahlke G, Marko D (2008) Comparison of delphinidin, quercetin and (−)-epigallocatechin-3-gallate as inhibitors of the EGFR and the ErbB2 receptor phosphorylation. Mol Nutr Food Res 52:815–822

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard J-Y, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 21:2237–2246

    Article  CAS  PubMed  Google Scholar 

  • Gajiwala KS, Feng J, Ferre R, Ryan K, Brodsky O, Weinrich S, Kath JC, Stewart A (2012) Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure 21:209–219

    Article  PubMed  Google Scholar 

  • Guérin O, Fischel JL, Ferrero J-M, Bozec A, Milano G (2010) EGFR targeting in hormone-refractory prostate cancer: current appraisal and prospects for treatment. Pharmaceuticals 3:2238–2247

    Article  PubMed Central  Google Scholar 

  • Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS (2003) Erlotinib (Tarceva): an update on the clinical trial program. Semin Oncol 30:34–46

  • Herbst RS, Hong WK (2002) IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody for treatment of head and neck cancer. Semin Oncol 29:18–30

  • Hillman GG (2012) Dietary agents in cancer chemoprevention and treatment. J Oncol 21:209–219

    Google Scholar 

  • Huang C-Y, Chan C-Y, Chou I-T, Lien C-H, Hung H-C, Lee M-F (2013) Quercetin induces growth arrest through activation of FOXO1 transcription factor in EGFR-overexpressing oral cancer cells. J Nutr Biochem 24:1596–1603

    Article  PubMed  Google Scholar 

  • Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54:355–366

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  • Jung JH, Lee JO, Kim JH, Lee SK, You GY, Park SH, Park JM, Kim EK, Suh PG, An JK (2010) Quercetin suppresses HeLa cell viability via AMPK-induced HSP70 and EGFR down-regulation. J Cell Physiol 23:408–414

    Google Scholar 

  • Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  CAS  PubMed  Google Scholar 

  • Kosaka T, Yamaki E, Mogi A, Kuwano H (2011) Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer. J Biomed Biotechnol 2011:165214. doi:10.1155/2011/165214

    Article  PubMed Central  PubMed  Google Scholar 

  • Labbé D, Provençal M, Lamy S, Boivin D, Gingras D, Béliveau R (2009) The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr 139:646–652

    Article  PubMed  Google Scholar 

  • Lee KW, Kang NJ, Rogozin EA, Kim H-G, Cho YY, Bode AM, Lee HJ, Surh Y-J, Bowden GT, Dong Z (2007) Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis 28:1918–1927

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Bivona TG (2012) Mechanisms of resistance to epidermal growth factor receptor inhibitors and novel therapeutic strategies to overcome resistance in NSCLC patients. Chemother Res Pract 2012:9

    Google Scholar 

  • Lin Y, Shi R, Wang X, Shen H-M (2008) Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr Cancer Drug Targets 8:634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu B, Bernard B, Wu JH (2006) Impact of EGFR point mutations on the sensitivity to gefitinib: insights from comparative structural analyses and molecular dynamics simulations. Proteins 65:331–346

    Article  CAS  PubMed  Google Scholar 

  • Lu JJ, Crimin K, Goodwin JT, Crivori P, Orrenius C, Xing L, Tandler PJ, Vidmar TJ, Amore BM, Wilson AG (2004) Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. J Med Chem 47:6104–6107

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Daddysman MK, Rankin GO, Jiang B-H, Chen YC (2010) Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int 10:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  • Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, Seto T, Satouchi M, Tada H, Hirashima T (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11:121–128

    Article  CAS  PubMed  Google Scholar 

  • Ono M, Kuwano M (2006) Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res 12:7242–7251

    Article  CAS  PubMed  Google Scholar 

  • Pao W, Miller VA (2005) Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 23:2556–2568

    Article  CAS  PubMed  Google Scholar 

  • Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed Central  PubMed  Google Scholar 

  • Paule B, Brion N (2003) EGF receptors in urological cancer. Molecular basis and therapeutic involvements. Ann Med Interne (Paris) 154:448–456

  • Phillips P, Sangwan V, Borja-Cacho D, Dudeja V, Vickers S, Saluja A (2011) Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett 308:181–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phosrithong N, Ungwitayatorn J (2010) Molecular docking study on anticancer activity of plant-derived natural products. Med Chem Res 19:817–835

    Article  CAS  Google Scholar 

  • Ranson M, Hammond LA, Ferry D, Kris M, Tullo A, Murray PI, Miller V, Averbuch S, Ochs J, Morris C (2002) ZD1839, a selective oral epidermal growth factor receptor–tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20:2240–2250

    Article  CAS  PubMed  Google Scholar 

  • Repasky MP, Shelley M, Friesner RA (2007) Flexible ligand docking with Glide. Curr Protoc Bioinformatics 8:11–18

    Google Scholar 

  • Saini KS, Piccart-Gebhart MJ (2010) Dual targeting of the PI3K and MAPK pathways in breast cancer. APJOH 2:13–15

    Google Scholar 

  • Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183

    Article  CAS  PubMed  Google Scholar 

  • Sarkar FH, Li Y (2006) Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 66:3347–3350

    Article  CAS  PubMed  Google Scholar 

  • Sertel S, Plinkert PK, Efferth T (2010) Natural products derived from traditional Chinese medicine as novel inhibitors of the epidermal growth factor receptor. Comb Chem High Throughput Screen 13:849–854

    Article  CAS  PubMed  Google Scholar 

  • Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169–181

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Shirakami Y, Moriwaki H (2008) Targeting receptor tyrosine kinases for chemoprevention by green tea catechin, EGCG. Int J Mol Sci 9:1034–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimizu M, Adachi S, Masuda M, Kozawa O, Moriwaki H (2011) Cancer chemoprevention with green tea catechins by targeting receptor tyrosine kinases. Mol Nutr Food Res 55:832–843

    Article  CAS  PubMed  Google Scholar 

  • Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519

    Article  CAS  Google Scholar 

  • Singh P, Bast F (2013) Multitargeted molecular docking study of plant-derived natural products on phosphoinositide-3 kinase pathway components. Med Chem Res 23:1690–1700

  • Sogabe S, Kawakita Y, Igaki S, Iwata H, Miki H, Cary DR, Takagi T, Takagi S, Ohta Y, Ishikawa T (2012) Structure-based approach for the discovery of Pyrrolo[3, 2-d]pyrimidine-based EGFR T790M/L858R mutant inhibitors. ACS Med Chem Lett 4:201–205

    Article  PubMed Central  PubMed  Google Scholar 

  • Sos ML, Fischer S, Ullrich R, Peifer M, Heuckmann JM, Koker M, Heynck S, Stückrath I, Weiss J, Fischer F (2009) Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc Natl Acad Sci USA 106:18351–18356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stamos J, Sliwkowski MX, Eigenbrot C (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277:46265–46272

    Article  CAS  PubMed  Google Scholar 

  • Suda K, Onozato R, Yatabe Y, Mitsudomi T (2009) EGFR T790M mutation: a double role in lung cancer cell survival? J Thorac Oncol 4:1–4

    Article  PubMed  Google Scholar 

  • Sun F, Zheng XY, Ye J, Wu TT, Wang Jl, Chen W (2012) Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer 64:599–606

    Article  CAS  PubMed  Google Scholar 

  • Sunil H (2012) Inhibition studies of naturally occurring terpene based compounds with cyclin-dependent kinase 2 enzyme. J Comput Sci Syst Biol 5:2

    Google Scholar 

  • Traish A, Morgentaler A (2009) Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: a potential molecular switch for tumour growth. Br J Cancer 101:1949–1956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Traxler P, Furet P (1999) Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol Ther 82:195–206

    Article  CAS  PubMed  Google Scholar 

  • Wong K-K, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20:87–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yatabe Y, Mitsudomi T (2007) Epidermal growth factor receptor mutations in lung cancers. Pathol Int 57:233–244

    Article  CAS  PubMed  Google Scholar 

  • Yun C-H, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong K-K, Meyerson M, Eck MJ (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 105:2070–2075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Chen S, Tang L, Shen Y, Luo L, Xu C, Liu Q, Li D (2013) Myricetin induces apoptosis in Hepg2 cells through Akt/P70s6k/bad signaling and mitochondrial apoptotic pathway. Anticancer Agents Med Chem 13:1575–1581

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Ercan D, Chen L, Yun C-H, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462:1070–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu M-L, Kyprianou N (2008) Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr Relat Cancer 15:841–849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Vice Chancellor, Central University of Punjab, Bathinda, Punjab, (India) for supporting this study with infrastructural requirements. We also thank Professor P. Ramarao (Dean, Academic Affairs), Central University of Punjab, Bathinda, Punjab, India for his suggestions during the course that tremendously helped to improve this article. This study was also supported by a Senior Research Fellowship grant-in-aid from Indian Council of Medical Research (ICMR), Government of India awarded to PS. We also thank executive director, Schrödinger, for providing Maestro 9.3 technical support that has tremendously helped in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Bast.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Bast, F. In silico molecular docking study of natural compounds on wild and mutated epidermal growth factor receptor. Med Chem Res 23, 5074–5085 (2014). https://doi.org/10.1007/s00044-014-1090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1090-1

Keywords

Navigation