Skip to main content
Log in

MD simulation of LNA-modified human telomeric G-quadruplexes: a free energy calculation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

One of the principal tools in the theoretical study of biological molecules is the method of molecular dynamic simulation. MD simulations have provided detailed information on the fluctuation and conformation changes of the system. It offers the prospects of detailed description of the dynamical structure with ion and water at molecular level. In this work, we have taken an oligomeric part of human telomeric DNA, d(TAGGGT), to form a tetrameric quadruplex structure and generate four modified complexes. For modification, we have taken locked nucleic acid. Here, we report the relative stability of these modified structures under K+ ion conditions and binding interaction between the strands as determined by MD simulation followed by energy calculation. MM-PBSA method is performed for the determination of most stable complex. In free energy calculation, different strands are taken as the ligand and receptor. The energetic study shows that a modified quadruplex, in which first two modified strands are bind with other two unmodified strands, is more stable than other complexes. The formation and stabilization of these quadruplexes have been shown to inhibit the activity of telomerase, thus establishing telomeric quadruplex as an attractive target for cancer therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal S, Ojha RP, Maiti S (2008) Energetics of the human tel-22 quadruplex telomestatin interaction: a molecular dynamics study. J Phys Chem B 112:6828–6836

    Article  CAS  PubMed  Google Scholar 

  • Arnott S, Chandrasekaran R, Marttila CM (1974) Structures for polyinosinic acid and polyguanylic acid. Biochem J 141:537–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arora A, Maiti SJ (2008) Effect of loop orientation on quadruplex-TMPyP4 interaction. Phys Chem B 112:8151–8159

    Article  CAS  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomers. Nature 350:569–573

    Article  CAS  PubMed  Google Scholar 

  • Burgess TL, Fisher EF, Ross SL, Bready JV, Qian YX, Bayewitch LA et al (1995) The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad Sci USA 92:4051–4055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Case DA, Cheathem TE et al (2005) The AMBER biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavallari N, Calzolarii A, Garbesi A, Di Felice R (2006) Stability and migration of metal ions in G4-wires by molecular dynamics simulations. J Phys Chem B 110:26337–26348

    Article  CAS  PubMed  Google Scholar 

  • Chaubey AK, Dubey KD, Ojha RP (2012) Stabilty and free energy calculation of LNA modified quadruplex: a molecular dynamics study. J Comput Aided Mol Des 26:289–299

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Bansal M (2001) G-quadruplex structure can be stable with only some coordination sites being occupied by cations: a six-nanosecond molecular dynamics study. J Phys Chem B 105:7572–7578

    Article  CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  • Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Article  CAS  PubMed  Google Scholar 

  • Cuesta J, Read MA, Neidle S (2003) The design of G-quadruplex ligands as telomerase inhibitors. Mini Rev Med Chem 3:11–21

    Article  CAS  PubMed  Google Scholar 

  • Dai JX, Carver M, Yang DZ (2008) Polymorphism of human telomeric quadruplex structures. Biochimie 90:1172–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL (2008) Targeting telomeres and telomerase. Biochimie 90:131–155

    Article  PubMed  Google Scholar 

  • Duan Y, Wu C, Chowdhury S et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  • Dubey KD, Ojha RP (2011) Binding free energy calculations with hybrid QM/MM methods for Abl kinase inhibitors. J Biol Phys 37:69–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elayadi AN, Braasch DA, Coret DR (2002) Implications of high affinity hybridization by locked nucleic acids for inhibition of human telomerase. Biochemistry 41:9973–9981

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Cech TR (1993) Characterization of a G-quartet formation reaction promoted by the beta-subunit of the Oxytricha telomere-binding protein. Biochemistry 32:11646–11657

    Article  CAS  PubMed  Google Scholar 

  • Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras–Raf. J Comput Chem 25:238–250

    Article  CAS  PubMed  Google Scholar 

  • Grand CL, Han HY, Munoz RM, Weitman S, Von Hoff DD, Hurley LH, Bearss DJ (2002) The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther 1:565–573

    CAS  PubMed  Google Scholar 

  • Gu J, Leszczynski J, Bansal M (1999) A new insight into the structure and stability of Hoogsteen hydrogen-bonded G-tetrad: an ab initio SCF study. Chem Phys Lett 311:209

    Article  CAS  Google Scholar 

  • Hud NV, Schultze P, Sklenar V, Feigon J (1999) Localization of ammonium lon in the minor groove of DNA duplexes in solution and the origin of DNA A-tract bending. J Mol Biol 285:233–243

    Article  CAS  PubMed  Google Scholar 

  • Jr Mackerell AD, Wiorkiewics-Kuczera J, Karplus MJ (1995) An all-atom empirical energy function for the simulation of nucleic acids. Am Chem Soc 117:11946–11975

    Article  Google Scholar 

  • Kang C, Zhang X, Ratliff R, Moyzis R, Rich A (1992) Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 356:126–131

    Article  CAS  PubMed  Google Scholar 

  • Kim NW et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Duan Y (2004) Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins 55:620–634

    Article  CAS  PubMed  Google Scholar 

  • Makarow VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666

    Article  Google Scholar 

  • Mergny JL, Riou JF, Mailliet P, Teulade-Fichou MP, Gilson E (2002) Natural and pharmacological regulation of telomerase. Nucleic Acids Res 30:839–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mikami-Terao Y, Akiyama M, Yuza Y, Yanagisawa T, Yamada O, Yamada H (2008) Antitumor activity of G-quadruplex-interactive agent TMPyP4 in K562 leukemic cells. Cancer Lett 261:226–234

    Article  CAS  PubMed  Google Scholar 

  • Monchaud D, Teulade-Fichou MP (2008) A hitchiker guide to G-quadruplex ligands. Org Biomol Chem 6:627–636

    Article  CAS  PubMed  Google Scholar 

  • Nathan WL (2009) Targeting G-quadruplex DNA with small molecules. Chimia 63(3):134–139

    Article  Google Scholar 

  • Neidle S, Parkinson GN (2008) Quadruplex DNA crystal structures and drug design. Biochimie 90:1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Organisian L, Bryan TM (2007) Physiological relevance of telomeric G-quadruplex formation: a potential drug target. BioEssays 29:155–165

    Article  Google Scholar 

  • Ou TM, Lu YJ, Tan JH, Huang ZS, Wong KY, Gu LQ (2008) G-quadruplexes: targets in anticancer drug design. Chem Med Chem 3:690–713

    Article  CAS  PubMed  Google Scholar 

  • Parkinson GN, Lee M, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    Article  CAS  PubMed  Google Scholar 

  • Patel DJ, Phan AT (2007) Human telomere, oncogenic promoter and 50-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res 35:7429–7455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS et al (2004) UCSF chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Phillips K, Dauter Z, Murchie AIH, Lilley DMJ, Luisi BJ (1997) The crystal structure of a parallel-stranded guanine Tetraplex at 0.95 Å resolution. Mol Biol 273:171–182

    Article  CAS  Google Scholar 

  • Pradhan et al (2011) Selection of G-quadruplex folding topology with LNA-modified human telomeric sequences in K+ solution. Chem Eur J 17:2405–2413

    Article  CAS  PubMed  Google Scholar 

  • Price DJ, Brooks CL 3rd (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121:10096–10103

    Article  CAS  PubMed  Google Scholar 

  • Randazzo A, Esposito V, Ohlenschlager O, Ramachandran R, Mayol L (2004) NMR solution structure of a parallel LNA quadruplex. Nucleic Acids Res 32:3083–3092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren J, Chaires JB (1999) Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 38:16067–16075

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Sacca B, Lacroix L, Mergny JL (2005) The effect of chemical modifications on the thermal stability of different G-quadruplexes-forming oligonucleotides. Nucleic Acids Res 33:1182–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sen D, Gilbert W (1998) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 344:410–444

    Article  Google Scholar 

  • Shammas MA, Reis RJS, Li C, Koley H, Hurley LH, Anderson KC, Munshi NC (2004) Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Cancer Res 10:770–776

    CAS  Google Scholar 

  • Spackova N, Berger I, Sponer J (1999) Nanosecond molecular dynamics simulation of parallel and antiparallel guanine quadruplex DNA molecules. J Am Chem Soc 121:5519–5534

    Article  CAS  Google Scholar 

  • Stelf R, Cheatham TE III, Spackova N, Fadrna E, Berger I, Koca J, Sponer J (2003) Formation pathways of a guanine-quadruplex DNA revealed by molecular dynamics and thermodynamic analysis of the substates. Biophys J 85:1787–1804

    Article  Google Scholar 

  • Tan JH, Gu LQ, Wu JY (2008) Design of selective G-quadruplex ligands as potential anticancer agents. Mini Rev Med Chem 8:1163–1178

    Article  CAS  PubMed  Google Scholar 

  • Walsh K, Gualberto A (1992) MyoD binds to the guanine tetrad nucleic acid structure. J Biol Chem 267:13714–13718

    CAS  PubMed  Google Scholar 

  • Wang W, Chen HJ, Sun J, Benimetskaya L, Schwartz A, Cannon P, Stein CA, Rabbani LE (1998) A comparison of guanosine-quartet inhibitory effects versus cytidine homopolymer inhibitory effects on rat neointimal formation. Antisense Nucleic Acid Drug Dev 8:227–236

    Article  CAS  PubMed  Google Scholar 

  • White JR, Gordon-Smith EC, Rutherford TR (1996) Phosphorothioate-capped antisense oligonucleotides to Ras GAP inhibit cell proliferation and trigger apoptosis but fail to downregulate GAP gene expression. Biochem Biophys Res Commun 227:118–124

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Tan C, Hsieh M, Wang J, Duan Y et al (2006) New-generation Amber united-atom force field. J Phys Chem B 110:13166–13176

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SB, Cohen GH, Davies DR (1975) X-ray fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. J Mol Biol 92:181–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to DST, New Delhi for computational facility in the form of FIST scheme. A part of computational work is done on SCFBio, IIT, New Delhi. We thankfully acknowledge the partial computational work at BRAF of C-DAC, Pune, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amit Kumar Chaubey or Rajendra Prasad Ojha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaubey, A.K., Dubey, K.D. & Ojha, R.P. MD simulation of LNA-modified human telomeric G-quadruplexes: a free energy calculation. Med Chem Res 24, 753–763 (2015). https://doi.org/10.1007/s00044-014-1182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1182-y

Keywords

Navigation