Skip to main content

Advertisement

Log in

Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Quinazolin-4-ones linked to 1,2,3-triazol (10) were identified as inhibitors of the bisphosphonate BPH-700 transcriptional factor from a high throughput screen. A series of 1,4-disubstituted triazoles (10a–j) were synthesized by the Cu-catalyzed azide-alkyne cyclo addition of 5-methoxy-2-nitro-4-(prop-2-yn-1-yloxy) benzamide (6) with various substituted azido benzenes (7) in the presence of CuSO4 under aerobic conditions followed by click reaction with substituted aldehydes. The target compounds were screened for antitubercular activity against Mycobacterium tuberculosis H37Rv by Broth micro dilution method using Lowenstein Jensen medium (LJ) (MIC < 9 μg/mL). Majority of the compounds 10b, 10d, 10e, 10i and 10j displayed good antitubercular activity with MIC 7–11 μg/mL. Further, 10e exhibited a promising inhibition with MIC 7 μg/mL, compared to the reference drug Rifampicin. Docking studies have been performed to understand the interactions between the synthesized compounds and the active site of pantothenate synthetase Mycobacterium tuberculosis H37Rv organism. The study revealed that the target compounds showed good affinity toward the protein when compared to the standard drug Pefloxacin. Further, 10b was found to interact with three amino acids, viz., Gln92, Arg200, Ser196, as evidenced by the large interaction energy (ΔG = −8.16 kcal/mol). Besides the above, the synthesized quinazolinone triazoles 10a–j were evaluated for their antibacterial activities against a panel of Gram +ve and Gram –ve bacteria. Among them 10a, 10e, 10 h and 10j showed promising broad spectrum antibacterial activity with inhibition in the range of 19–33-mm diameter of inhibition zone (DIZ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  • Ahmet YC, Asuman B, Bora E, Belma D (2004) Drug susceptibility testing of Mycobacterium tuberculosis by the broth microdilution method with 7H9 broth. Mem Inst Oswaldo Cruz 99:111–113

    Article  Google Scholar 

  • Alafeefy AM, Ceruso M, Al-Tamimi AMS, Prete SD, Capasso C, Supuran CT (2014) Quinazoline–sulfonamides with potent inhibitory activity against the α-carbonic anhydrase from Vibrio cholera. Bioorg Med Chem 22:5133–5140

    Article  CAS  PubMed  Google Scholar 

  • Alagarsamy V, Meena S, Vijayakumar S, Ramseshu KV, Revathi R (2003) Synthesis and pharmacological investigation of some novel 2,3-disubstituted quinazolin-4(3H)-ones as analgesic and anti-inflammatory agents. Pharmazie 58:233–236

    CAS  PubMed  Google Scholar 

  • Alvarado M, Barcelo M, Carro L, Masaguer CF, Raviña E (2006) Synthesis and biological evaluation of new quinazoline and cinnoline derivatives as potential atypical antipsychotics. Chem Biodivers 3:106–117

    Article  CAS  PubMed  Google Scholar 

  • Anand T, Sivaraman G, Chellappa D (2014) Quinazoline copper(II) ensemble as turn-on fluorescence sensor for cysteine and chemodosimeter for NO. J Photochem Photobiol A 281:47–52

    Article  CAS  Google Scholar 

  • Arora R, Kapoor A, Gill NS, Rana AC (2011) Quinazolinone: an overview. Int Res J Pharm 2:22–28

    CAS  Google Scholar 

  • Banothu V, Neelagiri C, Adepally U, Lingam J, Bommareddy K (2017) Phytochemical screening and evaluation of in vitro antioxidant and antimicrobial activities of the indigenous medicinal plant Albizia odoratissima. Pharm Biol 55:1155–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banu S, Bollu R, Nagarapu L, Nanubolu JB, Yogeswari P, Sriram D et al. (2018) Design, synthesis, and in vitro antitubercular activity of 1,2,3-triazolyl-dihydroquinoline derivatives Chem Biol Drug Des 92:1315–1323

    Article  CAS  PubMed  Google Scholar 

  • Camacho J, Barazarte A, Gamboa N, Rodrigues J, Rojas R, Vaisberg A et al. (2011) Synthesis and biological evaluation of benzimidazole-5-carbohydrazide derivatives as antimalarial, cytotoxic and antitubercular agents. Bioorg Med Chem 19:2023–2029

    Article  CAS  PubMed  Google Scholar 

  • Chandrika PM, Yakaiah T, Narsaiah B, Sridhar V, Venugopal G (2009) Synthesis leading to novel 2,4,6-trisubstituted quinazoline derivatives, their antibacterial and cytotoxic activity against THP-1, HL-60 and A375 cell lines. Indian J Chem 48B:840–847

    CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (2007) Performance standards for antimicrobial susceptibility testing: ninth informational supplement. National Committee for Clinical Laboratory Standard (NCCLS), Document No. M100-S9, Wayne, PA

  • Colotta V, Catarzi D, Varano F, Lenzi O, Filacchioni G (2006) Structural Investigation of the 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione scaffold to obtain AMPA and kainate receptor selective antagonists. Synthesis, pharmacological, and molecular modeling studies. J Med Chem 49:6015–6026

    Article  CAS  PubMed  Google Scholar 

  • Delogu G, Sali M, Fadda G (2013) The biology of Mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis 5:e2013070

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai NC, Undavia NK, Trivedi PB, Dave D, Vyas GD (1998) Synthesis and anti-HIV activity of some non-nucleoside 2,3-disubstituted quinazoline derivatives (Part-V). Indian J Exp Biol 36:1280–1283

    CAS  PubMed  Google Scholar 

  • Doyle LA, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358

    Article  CAS  PubMed  Google Scholar 

  • Elkamhawy A, Lee J, Park BG, Park I, Pae AN, Roh EJ (2014) Novel quinazoline-urea analogues as modulators for Aβ-inducedmitochondrial dysfunction: design, synthesis, and molecular docking study. Eur J Med Chem 84:466–475

    Article  CAS  PubMed  Google Scholar 

  • Fry DW, Kraker AJ, McMichael A, Ambroso LA, Nelson JM et al. (1994) A specific inhibitor of the epidermal growth factor receptor. Science 265:1093–1095

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202

    Article  CAS  PubMed  Google Scholar 

  • Gunda SK, Kongaleti SF, Shaik M (2015) Natural flavonoid derivatives as oral human epidermoid carcinoma cell inhibitors. Int J Comput Biol Drug Des 8:19–39

    Article  CAS  PubMed  Google Scholar 

  • Gupta SKr, Pancholi SS (2011) Synthesis and evaluation of antitubercular activity of some thiobenzimidazolyl derivatives. Der Pharma Chem 3:274–279

    CAS  Google Scholar 

  • Hess HJ, Cronin TH, Scriabine A (1968) Antihypertensive 2-amino-4(3H)-quinazolinones. J Med Chem 11(1):130–136

    Article  CAS  PubMed  Google Scholar 

  • Hung AW, Silvestre HL, Wen S, Ciulli A, Blundell TL, Abell C (2009) Application of fragment growing and fragment linking to the discovery of inhibitors of Mycobacterium tuberculosis pantothenate synthetase. Angew Chem Int Ed 48:8452–8456

    Article  CAS  Google Scholar 

  • Issar S (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496

    Article  CAS  Google Scholar 

  • Jatav V, Kashaw S, Mishra P, Gupta V (2008) Synthesis and antimicrobial activity of some new 3-[5-(4-substituted) phenyl-1,3,4-oxadiazole-2yl]-2-styrylquinazoline-4(3H)-ones. Med Chem Res 17:205–211

    Article  CAS  Google Scholar 

  • Jhone S (1982) Search for pharmaceutically interesting quinazoline derivatives: efforts and results (1969–1980). In: Jucker E (ed) Progress in drug research, vol 26. Birkauser, Basel, Switzerland, pp 259–341

  • Jones TR, Webbe SE, Varney MD, Reddy MR, Lewis KK (1997) Structure-Based Design of Substituted Diphenyl Sulfones and Sulfoxides as Lipophilic Inhibitors of Thymidylate Synthase. J Med Chem 40:677–683

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh F (1972) Analytical microbiology, vol II. Academic Press, New York

  • Kumar DS, Kumar DS, Gautam P (2009) Enantioselective synthesis of functionalized 1‐benzoxepines by phenoxide ion mediated 7‐endo‐tet carbocyclization of cyclic sulfates. Eur J Org Chem 2:204–207

    Google Scholar 

  • Kumar S, Mishra G, Singh P, Jha KK, Khosa RL, Gupta SK et al. (2011) Quinazolin-4-one: a highly important hetrocycle with diverse biological activities: a review. Der Chem Sin 2(4):36–58

    Google Scholar 

  • Lakhan R, Singh OP (1988) Singh JRL studies on 4-(3H)-quinazolinone derivatives as anti-malarials. J Indian Chem Soc 64:316–318

    Google Scholar 

  • Majumdar KC, Ghosh T, Ponra S (2013) A reductive Mizoroki–Heck approach to dibenzo[b,e]oxepine. Tetrahedron Lett 54:4661–4665

    Article  CAS  Google Scholar 

  • Malamas MS, Millen J (1991) Quinazoline acetic acids and related analogs as aldose reductase inhibitors. J Med Chem 34:1492–1503

    Article  CAS  PubMed  Google Scholar 

  • Mohammed JH, Mohammed AI, Abass SJ (2015) Antibacterial activity importance of 1, 2, 3-triazole and 1, 2, 4-triazoleby click chemistry. J Chem Cheml Sci 5:317–324

    Google Scholar 

  • Mohan Rao A, Ashok Kumar T, Rama Devi B (2017) Synthesis, molecular docking and antimycobacterial evaluation of imidazo quinoline-5-carboxylic acid as inhibitors of Mycobacterium tuberculosis pantothenate synthetase. J Chem Pharm Res 9:299–306

    Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner Michel F, Belew Richard K, Goodsell David S et al. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murugan V, Padmavathy NP, Padmavathy GVS, Ramasarama SV, Sharma BS (2003) Synthesis of some quinazolinone derivatives as possible anticancer agents. Indian J Heterocy Ch 13:143–146

    CAS  Google Scholar 

  • Nagarajan G, Kavimani S (2010) Synthesis and in vitro antibacterial studies of some novel 3-(5-amino-6(2, 3-dichlorophenyl)-1, 2, 4-triazin-3-yl)-2-aryl quinazoline-4(3H)-one. Der Pharm Sin 1:109–116

    CAS  Google Scholar 

  • Nanda AK, Ganguli S, Chakraborty R (2007) Antibacterial activity of some 3-(arylideneamino)-2-phenylquinazoline-4(3H)-ones: synthesis and preliminary QSAR studies. Molecules 12:2413–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narender M, Umasankar K, Malathi J, Shravan Kumar G, Raghuram Rao A (2018) Synthesis, antimycobacterial evaluation and docking studies of some 7-methyl-5,6,7,8-tetrahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-one. Chem Pharm Bull 66:923–931

    Article  Google Scholar 

  • Ouyang G, Zhang P, Xu G, Song B, Yang S, Jin L et al. (2006) Synthesis and antifungal bioactivities of 3-alkylquinazolin- 4-one derivatives Molecules 11:383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattan SR, Reddy VVK, Manvi FV, Desai BG, Bhat A (2006) Synthesis of N-3(4-(4-chlorophenyl thiazole-2-yl)-(2-(amino)methyl)-quinazoline-4(3H)-one and their derivatives for antitubercular activity. Indian J Chem 45 B:1778–1781

    Google Scholar 

  • Saravanan G, Alagarsamy V, Prakash CR (2010) Synthesis and evaluation of antioxidant activities of novel quinazoline derivatives. Int J Pharm Pharm Sci 2:83–86

    CAS  Google Scholar 

  • Sasmal S, Balaji G, Kanna Reddy HR, Bala subrahmanyam D, Srinivas G (2012) Design and optimization of quinazoline derivatives as melanin concentrating hormone receptor 1 (MCHR1) antagonists. Bioorg Med Chem Lett 22:3157–3162

    Article  CAS  PubMed  Google Scholar 

  • Suresh A, Mahalakshmi NK, Srinivasarao S, Agnieszka N, Ewa AK, Sankaranarayanan M et al. (2017) Identification and development of pyrazolo[4,3-c]pyridine carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors New J Chem 41:347–357

    Article  CAS  Google Scholar 

  • Tiwary BK, Pradhan K, Nanda AK, Chakraborty R (2015) Implication of quinazoline-4(3H)-ones in medicinal chemistry: a brief review. J Chem Biol Ther 1:104

    Google Scholar 

  • Vanderberg D, Zoellner K. R, Ogunrombi M. O, Malan S. F, Terre Blanche G, Castagnoli N et al. (2007) Inhibition of monoamine oxidase B by selected benzimidazole and caffeine analogues Bio.Org. Med. Chem 15:3692–3702

    Article  CAS  Google Scholar 

  • Viswanadh N, Aslam S, Sanket B, Vyas R, Karthikeyan M, Yogeeswari P et al. (2018) Identification of potent chromone embedded [1,2,3]-triazoles as novel anti-tubercular agents R Soc Open Sci 5:171750

    Article  CAS  Google Scholar 

  • Zhang Y, Chen C, Liu J, Deng H, Pan A, Zhang L et al. (2011) Complete genome sequences of Mycobacterium tuberculosis strains CCDC5079 and CCDC5080, which belong to the Beijing family J Bacteriol 193:5591–5602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to KLEF (Deemed to be University) management for Ph.D. registration and the management of United States Pharmacopeial Convention for their immense support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. N. Murthy*.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddali, N.K., Viswanath*, I.V.K., Murthy*, Y.L.N. et al. Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activity. Med Chem Res 28, 559–570 (2019). https://doi.org/10.1007/s00044-019-02313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02313-9

Keywords

Navigation