Skip to main content
Log in

Cytotoxicity of multicellular cancer spheroids, antibacterial, and antifungal of selected sulfonamide derivatives coupled with a salicylamide and/or anisamide scaffold

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In an attempt to overcome the drawbacks of the cancer monolayers model (2D), the 3-dimensional (3D) multicellular cancer spheroids (MCS) have been developed. Nine of most active sulfonamide derivatives coupled with a salicylamide scaffold were screened for cytotoxicity on two human cancer cell line spheroids (MCF7 and HCT116) in addition to one human normal cell line spheroid (RPE-1). 5-Chloro-N-[(N-4-chlorophenyl) 4-sulfamoylbenzyl] salicylamide (9) was found to be the most active compound among all tested compounds. It showed 70% inhibition on HCT116 spheroids, almost double the activity of cisplatin, and higher activity than cisplatin on MCF7 spheroids. Also, 5-chloro-N-[(N-benzyl) 4-sulfamoylbenzyl] salicylamide (18) and 5-chloro-N-[(N-2-phenylethyl) 4-sulfamoylbenzyl] salicylamide (19) showed cytotoxicity against HCT116 slightly lower than that of cisplatin (32% and 31%, respectively) but with much lower cytotoxicity against the normal cell (4% and 10% vs. 39%, respectively). Based on in silico virtual screening against DHPS enzyme, some sulfonamide derivatives coupled with a salicylamide and/or anisamide scaffold were tested in vitro against four bacterial and fungal pathogens. 5-Chloro-N-[(N-2-nitro-4-methylphenyl) 4-sulfamoylbenzyl] salicylamide (17) and 5-chloro-N-[(N-2-nitro-4-methylphenyl) 4-sulfamoylbenzyl] anisamide (5) showed strong antifungal activity on the tested organism, while the first one (17) have the strongest antibacterial activity against the G +ve and G −ve bacterium. In vitro, dihydropterate synthase (DHPS) enzyme assay showed that, compounds 5 and 17 effectively inhibit dihydropterate synthase (DHPS) enzyme by 93.78% and 95.15%, respectively, while miconazole inhibit the enzyme with only 87.50%. In addition, their effect upon amylase, lipase and protease enzymes was reported. The most active compounds 5, 9, 17–19 could be subjected to in vivo investigation as new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali A, Reddy GS, Cao H, Anjum SG, Nalam MN, Schiffer CA, Rana TM (2006) Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands. J Med Chem 49(25):7342–7356

    Article  CAS  PubMed  Google Scholar 

  • Ali AI, Ogbonna CC, Rahman AT (1998) Hydrolysis of certain Nigerian starches using crude fungal amylase. Niger J Biotechnl 9:24–36

    Google Scholar 

  • Babaoglu K, Qi J, Lee RE, Whilte SW (2004) Crystal structure of 7,8-dihydropteroate synthase from Bacillus anthracis: mechanism and novel inhibitor design. Structure 12(9):1705–1717

    Article  CAS  PubMed  Google Scholar 

  • Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batubara I, Mitsunaga T, Ohashi H (2009) Screening antiacne potency of Indonesian medicinal plants: antibacterial, lipase inhibition, and antioxidant activities. J Wood Sci 55:230–235

    Article  Google Scholar 

  • Bertacine Dias MV, Santos JC, Libreros-Zúñiga GA, Ribeiro JA, Chavez-Pacheco SM (2018) Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases. Future Med Chem 10(8):935–959

    Article  CAS  PubMed  Google Scholar 

  • Chiarino D, Napoletano M, Sala A (1988) Synthesis of 4,7‐dihydro‐4‐oxoisoxazolo[5,4‐b]pyridine‐5‐carboxylic acid derivatives as potential antimicrobial agents. J. Heterocyclic Chem 25(1):231–233

    Article  CAS  Google Scholar 

  • Cupp-Enyard C (2008) Sigma’s non-specific protease activity assay—casein as a substrate. J Vis Exp 19:899

    Google Scholar 

  • Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110(4):475–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davie BJ, Christopoulos A, Scammells PJ (2013) Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits. ACS Chem Neurosci 4(7):1026–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekert JE, Johnson K, Strake B, Pardinas J, Jarantow S, Perkinson R, Colter DC (2014) Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitroimplication for drug development. PLoS One 9(3):e92248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fayad W, Rickardson L, Haglund C, Olofsson MH, D’Arcy P, Larsson R, Linder S, Fryknas M (2011) Identification of agents that induce apoptosis of multicellular tumor spheroids: enrichment for mitotic inhibitors with hydrophobic properties. Chem Biol Drug Des 78(4):547–557

    Article  CAS  PubMed  Google Scholar 

  • Friedrich J, Eder W, Castaneda J, Doss M, Huber E, Ebner R, Kunz-Schughart LA (2007) A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen 2(7):925–937

    Article  CAS  Google Scholar 

  • Galal AMF, Shalaby EM, Abouelsayed A, Ibrahim MA, Al-Ashkar E, Hanna AG (2018) Structure and absolute configuration of some 5-chloro-2-methoxy-N-phenylbenzamide derivatives. Spectrochim Acta A Mol Biomol Spectrosc 188:213–221

    Article  CAS  PubMed  Google Scholar 

  • Galal AMF, Soltan MM, Ahmed ER, Hanna AG (2018) Synthesis and biological evaluation of novel 5-chloro-N-(4-sulfamoylbenzyl) salicylamide derivatives as tubulin polymerization inhibitors. MedChemComm 9(9):1511–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galateanu B, Hudita A, Negrei C, Ion RM, Costache M, Stan M, Nikitovic D, Hayes AW, Spandidos DA, Tsatsakis AM, Ginghina O (2016) Impact of multicellular tumor spheroids as an in vivo-like tumor model on anticancer drug response. Int J Oncol 48(6):2295–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galiana-Roselló C, Bilbao-Ramos P, Dea-Ayuela MA, Rolón M, Vega C, Bolas-Fernández F, Garcia-España E, Alfonso J, Coronel C, Gonzlez- Rosende ME (2013) In vitro and in vivo antileishmanial and trypanocidal studies of new N-benzene- and N-naphthalenesulfonamide derivatives. J Med Chem 56(22):8984–8998

    Article  PubMed  CAS  Google Scholar 

  • Gangjee A, Kurup S, Namjoshi O (2007) Dihydrofolate reductase as a target for chemotherapy in parasites. Curr Pharm Des 13(6):609–639

    Article  CAS  PubMed  Google Scholar 

  • Hanan EJ, Fucini RV, Romanowski MJ, Elling RA, Lew W, Purkey HE, Vanderporten EC, Yang W (2008) Design and synthesis of 2-amino-isoxazolopyridines as Polo-like kinase inhibitors. Bioorg Med Chem Lett 18(19):5186–5189

    Article  CAS  PubMed  Google Scholar 

  • Hanauske AR, Depenbrock H, Shirvani D, Rastetter J (1994) Effects of the microtubule-disturbing agents docetaxel (Taxotere), vinblastine and vincristine on epidermal growth factor-receptor binding of human breast cancer cell lines in vitro. Eur J Cancer 30A(11):1688–1694

    Article  CAS  PubMed  Google Scholar 

  • Hanson AD, Gregory III JF (2011) Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol 62:105–125

    Article  CAS  PubMed  Google Scholar 

  • Hawser S, Lociuro S, Islam K (2006) Dihydrofolate reductase inhibitors as antibacterial agents. Biochem Pharmacol 71(7):941–948

    Article  CAS  PubMed  Google Scholar 

  • Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32(1):40–51

    Article  CAS  PubMed  Google Scholar 

  • Hemaiswarya S, Kruthiventi AK, Doble M (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15(8):639–652

    Article  CAS  PubMed  Google Scholar 

  • Ho RI, Corman L, Mores SA, Schneider H (1975) Structure-activity of sulfones and sulfonamides on dihydropteroate synthetase from Neisseria meingitidis. Antimicrob Agents Chemother 7(6):758–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höhn H, Polacek I, Schulze E (1973) Potential antidiabetic agents. Pyrazolo(3,4-b)pyridines. J Med Chem 16(12):1340–1346

    Article  PubMed  Google Scholar 

  • Ivascu A, Kubbies M (2006) Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 11(8):922–932

    Article  CAS  PubMed  Google Scholar 

  • Keche AP, Hatnapure GD, Tale RH, Rodge AH, Birajdar SS, Kamble VM (2012) A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg Med Chem Lett 22(10):3445–3448

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Mount CW, Gombotz WR, Pun SH (2010) The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. Biomaterials 31(28):7386–7397

    Article  CAS  PubMed  Google Scholar 

  • Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52(3):167–182

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Man S, Graham CH, Kapitain SJ, Teicher BA, Kerbel RS (1993) Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci USA 90(8):3294–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4(4):359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Pan SL, Su MC, Liu YM, Kuo CC, Chang YT, Wu JS, Nien CY, Mehndiratta S, Chang CY, Wu SY, Lai MJ, Chang JY, Liou JP (2013) Furanylazaindoles: potent anticancer agents in vitro and in vivo. J Med Chem 56(20):8008–8018

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14(1):61–86

    Article  CAS  PubMed  Google Scholar 

  • McCullough JL, Maren TH (1973) Inhibition of dihydropteroate synthase from Escherichia coli by sulfones and sulfonamides. Antimicrob Agents Chemother 3(6):665–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire JJ (2003) Anticancer antifolates: current status and future directions. Curr Pharm Des 9(31):2593–2613

    Article  CAS  PubMed  Google Scholar 

  • Mohan R, Banerjee M, Ray A, Manna T, Wilson L, Owa T, Bhattacharyya B, Panda D (2006) Antimitotic sulfonamides inhibit microtubule assembly dynamics and cancer cell proliferation. Biochemistry 45(17):5440–5449

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra BR, Bapuji M, Sree A (2003) Production of industrial enzymes (amylase, carboxymethylcellulase and protease) by bacteria isolated from marine sedentary organisms. Acta Biotechnol 23(1):75–84

    Article  CAS  Google Scholar 

  • Mostafa H, El-Hadi AA (2010) Immobilization of Mucor racemosus NRRL 3631 lipase with different polymer carriers produced by radiation polymerization. Malay J Microbiol 6(2):149–155

    Google Scholar 

  • Murado MA, Siso MaIG, Gonzalez MaP, Montemayor MI, Pastrana L, Miron J (1993) Characterization of microbial biomasses and amylolytic preparations obtained from mussel processing waste treatment. Bioresource Technol 43(2):117–125

    Article  CAS  Google Scholar 

  • Owa T, Yokoi A, Yamazaki K, Yoshimatsu K, Yamori T, Nagasu T (2002) Array-based structure and gene expression relationship study of antitumor sulfonamides including N-[2-[(4-hydroxyphenyl)amino]-3-pyridinyl]-4-methoxybenzenesulfonamide and N-(3-chloro-7-indolyl)-1,4-benzenedisulfonamide. J Med Chem 45(22):4913–4922

    Article  CAS  PubMed  Google Scholar 

  • Owa T, Yoshino H, Okauchi T, Yoshimatsu K, Ozawa Y, Sugi N, Nagasu T, Koyanagi N, Kitoh K (1999) Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J Med Chem 42(19):3789–3799

    Article  CAS  PubMed  Google Scholar 

  • Pei RS, Zhou F, Ji BP, Xu J (2009) Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J Food Sci 74(7):M379–M383

    Article  CAS  PubMed  Google Scholar 

  • Pillai SK, Moellering RC, Eliopoulos GM (2005) Antimicrobial combinations. In: Lorian V (ed) Antibiotics in laboratory medicine, 5th ed. Lippincott Williams & Wilkins, Philadelphia, p 365–440

    Google Scholar 

  • Poręba K, Pawlik K, Rembacz KP, Kurowska E, Matuszyk J, Długosz A (2015) Synthesis and antibacterial activity of new sulfonamide isoxazolo[5,4-b]pyridine derivatives. Acta Pol Pharm 72(4):727–735

    PubMed  Google Scholar 

  • Pretorius JC, Magama S, Zietsman PC, van Wyk BE (2003) Growth inhibition of plant pathogenic bacteria and fungi by extracts from selected South African plant species. South African J Botany 69(2):186–192

    Article  Google Scholar 

  • Procopiou PA, Barrett JW, Barton NP, Begg M, Clapham D, Copley RCB, Ford AJ, Graves RH, Hall DA, Hancock AP, Hill AP, Hobbs H, Hodgson ST, Jumeaux C, Lacroix YML, Miah AH, Morriss KML, Needham D, Sheriff EB, Slack RJ, Smith CE, Sollis SL, Staton H (2013) Synthesis and structure-activity relationships of indazole arylsulfonamides as allosteric CC-chemokine receptor 4 (CCR4) antagonists. J Med Chem 56(5):1946–1960

    Article  CAS  PubMed  Google Scholar 

  • Shamsi TN, Fatima S (2016) Protease inhibitors as ad-hoc antibiotics. Open Pharma Sci J 3:131–137

    Article  Google Scholar 

  • Smith SJ, Wilson M, Ward JH, Rahman CV, Peet AC, Macarthur DC, Rose FR, Grundy RG, Rahman R (2012) Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One 7(12):e52335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suganthi C, Mageswari A, Karthikeyan S, Anbalagan A, Sivakumar K, Gothandam M (2013) Screening and optimization of protease production from a halotolerant Bacillus licheniformis isolated from saltern sediments. J Gen Eng Biotechnol 11(1):47–52

    Article  Google Scholar 

  • Sunitha VH, Ramesha A, Savitha J, Srinivas C (2012) Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol 43(3):1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supuran CT, Casini A, Scozzafava A (2003) Protease inhibitors of the sulfonamide type: anticancer, antiinflammatory, and antiviral agents. Med Res Rev 23(5):535–558

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT, Scozzafava A (2000) Carbonic anhydrase inhibitors: aromatic sulfonamides and disulfonamides act as efficient tumor growth inhibitors. J Enzyme Inhib 15(6):597–610

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT, Scozzafava A, Clare BW (2002) Bacterial protease inhibitors. Med Res Rev 22(4):329–372

    Article  CAS  PubMed  Google Scholar 

  • Sutherland RM, McCredie JA, Inch WR (1971) Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst 46(1):113–120

    CAS  PubMed  Google Scholar 

  • Tang YB, Lu D, Chen Z, Hu C, Yang Y, Tian JY, Ye F, Wu L, Zhang ZY, Xiao Z (2013) Design, synthesis and insulin-sensitising effects of novel PTP1B inhibitors. Bioorg Med Chem Lett 23(8):2313–2318

    Article  CAS  PubMed  Google Scholar 

  • Tannock IF, Lee CM, Tunggal JK, Cowan DS, Egorin MJ (2002) Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res 8(3):878–884

    CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tunggal JK, Cowan DS, Shaikh H, Tannock IF (1999) Penetration of anticancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors. Clin Cancer Res 5:1583–1586

    CAS  PubMed  Google Scholar 

  • Uchima Y, Sawada T, Nishihara T, Maeda K, Ohira M, Hirakawa K (2004) Inhibition and mechanism of action of a protease inhibitor in human pancreatic cancer cells. Pancreas 29(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Vaidya S, Rathore P (2015) Isolation, screening and characterization of amylase producing bacteria from soil of potato dump sites from different regions of madhya pradesh. Conference Paper

  • Wallace DI, Guo X (2013) Properties of tumor spheroid growth exhibited by simple mathematical models. Front Oncol 3:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Weidel E, de Jong JC, Brengel C, Storz MP, Braunshausen A, Negri M, Plaza A, Steinbach A, Müller R, Hartmann RW (2013) Structure optimization of 2-benzamidobenzoic acids as PqsD inhibitors for Pseudomonas aeruginosa infections and elucidation of binding mode by SPR, STD NMR, and molecular docking. J Med Chem 56(15):6146–6155

    Article  CAS  PubMed  Google Scholar 

  • Wenzel C, Riefke B, Gründemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Räse S, Ansari N, Esner M, Bickle M, Pampaloni F, Mattheyer C, Stelzer EH, Parczyk K, Prechtl S, Steigemann P (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323(1):131–143

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson BL, Bornaghi LF, Wright AD, Houston TA, Poulsen SA (2007) Anti-mycobacterial activity of a bis-sulfonamide. Bioorg Med Chem Lett 17(5):1355–1357

    Article  CAS  PubMed  Google Scholar 

  • Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, Bevilacqua A, Tesei A (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6:19103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zouaoui B, Bouziane A (2011) Isolation, optimisation and purification of lipase production by Pseudomonas Aeruginosa. J Biotechnol Biomater 1:120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for Professor Stig Linder, Karolinska Institute, Sweden, for kindly providing us with HCT116, MCF7, and RPE1 cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaaeldin M. F. Galal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galal, A.M.F., Fayad, W., Mettwally, W.S.A. et al. Cytotoxicity of multicellular cancer spheroids, antibacterial, and antifungal of selected sulfonamide derivatives coupled with a salicylamide and/or anisamide scaffold. Med Chem Res 28, 1425–1440 (2019). https://doi.org/10.1007/s00044-019-02382-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02382-w

Keywords

Navigation