Skip to main content
Log in

Mechatronik in der HNO-Chirurgie

Erste Erfahrungen mit dem daVinci-Telemanipulator-System

Mechatronic in functional endoscopic sinus surgery

First experiences with the daVinci Telemanipulatory System

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

An einem kommerziell erhältlichen Telemanipulator (daVinci, Intuitive Surgical, USA) wurden am Beispiel des endonasalen Zuganges zu den Nasennebenhöhlen die potenziellen Vor- und Nachteile computergesteuerter Instrumente untersucht.

Methode

Es wurden fünf unterschiedliche Operationen an den Nasennebenhöhlen an 14 anatomischen Präparaten durchgeführt und mit der konventionellen Op.-Technik verglichen. 140 Eingriffe an den Nasennebenhöhlen wurden unter folgenden Kriterien untersucht: Freiheitsgrade, Zeitaufwand, Lerneffekt, Kraftrückführung, Ergonomie.

Ergebnisse

Die Instrumente des Telemanipulators verfügen in der „region of interest“ über mehr Freiheitsgrade als konventionelle Instrumente. Der durchschnittliche zusätzliche Mehraufwand für die Rüstzeit des Systems lag in unserer Untersuchung bei 9±2 min. Die rhinochirurgisch erfahrenen Chirurgen schätzten den Wegfall der Kraftrückführung als negativ ein und die Bewegungsskalierung als hilfreich. Sie bewerteten die ergonomische Gesamtsituation als besser im Vergleich zur konventionellen Methode.

Fazit

Der Telemanipulator bietet Vorteile bei der Anzahl der verfügbaren Instrumentenfreiheitsgrade, in der Möglichkeit der Instrumenteninteraktion („motion scaling“, „indexing“) und in der Ergonomie.

Abstract

Background

This study examines the advantages and disadvantages of a commercial telemanipulator system (daVinci, Intuitive Surgical, USA) with computer-guided instruments in functional endoscopic sinus surgery (FESS).

Methods

We performed five different surgical FESS steps on 14 anatomical preparation and compared them with conventional FESS. A total of 140 procedures were examined taking into account the following parameters: degrees of freedom (DOF), duration , learning curve, force feedback, human-machine-interface.

Results

Telemanipulatory instruments have more DOF available then conventional instrumentation in FESS. The average time consumed by configuration of the telemanipulator is around 9±2 min. Missing force feedback is evaluated mainly as a disadvantage of the telemanipulator. Scaling was evaluated as helpful. The ergonomic concept seems to be better than the conventional solution.

Discussion

Computer guided instruments showed better results for the available DOF of the instruments. The human-machine-interface is more adaptable and variable then in conventional instrumentation. Motion scaling and indexing are characteristics of the telemanipulator concept which are helpful for FESS in our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abbou CC, Hoznek A, Salomon L, Olsson LE, Lobontiu A, Saint F, Cicco A, Antiphon P, Chopin D (2001) Laparoscopic radical prostatectomy with a remote controlled robot. J Urol 165: 1964–1966

    Article  CAS  PubMed  Google Scholar 

  2. Bentas W, Wolfram M, Brautigam R, Probst M, Beecken W, Jonas D, Binder J (2003) Da Vinci robot assisted Anderson-Hynes dismembered pyeloplasty: technique and 1 year follow-up. World J Urol 21: 133–138

    Article  PubMed  Google Scholar 

  3. Caversaccio M, Nolte L, Hausler R (2002) Present state and future perspectives of computer aided surgery in the field of ENT and skull base. Acta Otorhinolaryngol Belg 56: 51–59

    PubMed  Google Scholar 

  4. Das H, Zak H, Johnson J, Crouch J, Frambach D (1999) Evaluation of a telerobotic system to assist surgeons in microsurgery. Comput Aided Surg 4: 15–25

    Article  CAS  PubMed  Google Scholar 

  5. Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng 214: 129–140

    Article  CAS  Google Scholar 

  6. Desgranges P, Bourriez A, Javerliat I et al. (2004) Robotically assisted aorto-femoral bypass grafting: lessons learned from our initial experience. Eur J Vasc Endovasc Surg 27: 507–511

    Article  CAS  PubMed  Google Scholar 

  7. Falk V, Diegler A, Walther T, Autschbach R, Mohr FW (2000) Developments in robotic cardiac surgery. Curr Opin Cardiol 15: 378–387

    Article  CAS  PubMed  Google Scholar 

  8. Falk V, Gummert JF, Walther T, Hayase M, Berry GJ, Mohr FW (1999) Quality of computer enhanced totally endoscopic coronary bypass graft anastomosis — comparison to conventional technique. Eur J Cardiothorac Surg 15: 260–264; discussion 264–265

    Article  CAS  PubMed  Google Scholar 

  9. Falk V, Jacobs S, Gummert JF, Walther T, Mohr FW (2003) Computer-enhanced endoscopic coronary artery bypass grafting: the da Vinci experience. Semin Thorac Cardiovasc Surg 15: 104–111

    Article  PubMed  Google Scholar 

  10. Federspil PA, Geisthoff UW, Henrich D, Plinkert PK (2003) Development of the first force-controlled robot for otoneurosurgery. Laryngoscope 113: 465–471

    Article  PubMed  Google Scholar 

  11. Federspil PA, Plinkert PK (2004) Robotic surgery in otorhinolaryngology. Otolaryngol Pol 58: 237–242

    PubMed  Google Scholar 

  12. Freysinger W, Gunkel AR, Thumfart WF (1997) Image-guided endoscopic ENT surgery. Eur Arch Otorhinolaryngol 254: 343–346

    CAS  PubMed  Google Scholar 

  13. Gausemeier J (2004) Intelligente mechatronische Systeme: Grundlagen, Methoden und Werkzeuge, Adaption und Selbstoptimierung, Mechatronik und Mikrosystemtechnik. HNI, Paderborn II, S 239

    Google Scholar 

  14. Gourin CG, Terris DJ (2004) Surgical robotics in otolaryngology: expanding the technology envelope. Curr Opin Otolaryngol Head Neck Surg 12: 204–208

    PubMed  Google Scholar 

  15. Gulbins H, Boehm DH, Reichenspurner H, Arnold M, Ellgass R, Reichart B (1999) 3D-visualization improves the dry-lab coronary anastomoses using the Zeus robotic system. Heart Surg Forum 2: 318–324; discussion 324–325

    CAS  PubMed  Google Scholar 

  16. Hirzinger G, Brunner B, Landzettel K, Sporer N, Butterfass J, Schedl M (2003) Space robotics--DLR’s telerobotic concepts, lightweight arms and articulated hands. Auton Robots 14: 127–145

    Article  CAS  PubMed  Google Scholar 

  17. Iro H, Zenk J (2001) A new device for frontal sinus endoscopy: first clinical report. Otolaryngol Head Neck Surg 125: 613–616

    Article  CAS  PubMed  Google Scholar 

  18. Jacobs S, Falk V, Onnasch J, Mohr FW (2003) Thoraskopische Koronarchirurgie. Stand und Entwicklungsmöglichkeiten. Chirurg 74: 310–314

    Article  CAS  PubMed  Google Scholar 

  19. Jacobs S, Holzhey D, Kiaii BB, Onnasch JF, Walther T, Mohr FW, Falk V (2003) Limitations for manual and telemanipulator-assisted motion tracking — implications for endoscopic beating-heart surgery. Ann Thorac Surg 76: 2029–2035; discussion 2035–2036

    Article  PubMed  Google Scholar 

  20. Jourdan IC, Dutson E, Garcia A, Vleugels T, Leroy J, Mutter D, Marescaux J (2004) Stereoscopic vision provides a significant advantage for precision robotic laparoscopy. Br J Surg 91: 879–885

    Article  CAS  PubMed  Google Scholar 

  21. Klein M, Hein A, Lueth T, Bier J (2003) Robot-assisted placement of craniofacial implants. Int J Oral Maxillofac Implants 18: 712–718

    PubMed  Google Scholar 

  22. Klimek L, Mosges R (1998) Computer-assistierte Chirurgie (CAS) in der HNO-Heilkunde. Entwicklungen und Erfahrungen aus dem ersten Jahrzehnt der Anwendung. Laryngorhinootologie 77: 275–282

    CAS  PubMed  Google Scholar 

  23. Menon M, Tewari A, Baize B, Guillonneau B, Vallancien G (2002) Prospective comparison of radical retropubic prostatectomy and robot-assisted anatomic prostatectomy: the Vattikuti Urology Institute experience. Urology 60: 864–868

    Article  PubMed  Google Scholar 

  24. Patil PV, Hanna GB, Cuschieri A (2004) Effect of the angle between the optical axis of the endoscope and the instruments‘ plane on monitor image and surgical performance. Surg Endosc 18: 111–114

    Article  CAS  PubMed  Google Scholar 

  25. Plinkert PK, Plinkert B, Hiller A, Stallkamp J (2001) Einsatz eines Roboters an der lateralen Schadelbasis. Evaluation einer robotergesteuerten Mastoidektomie am anatomischen Praparat. HNO 49: 514–522

    Article  CAS  PubMed  Google Scholar 

  26. Plinkert PK, Schurr MO, Kunert W, Flemming E, Buess G, Zenner HP (1996) Minimal-invasive HNO-Chirurgie (MI-HNO). Fortschritte durch moderne Technologien. HNO 44: 288–301

    CAS  PubMed  Google Scholar 

  27. Reinhardt H, Trippel M, Westermann B, Gratzl O (1999) Computer aided surgery with special focus on neuronavigation. Comput Med Imaging Graph 23: 237–244

    Article  CAS  PubMed  Google Scholar 

  28. Rininsland HH (1993) Basics of robotics and manipulators in endoscopic surgery. Endosc Surg Allied Technol 1: 154–159

    CAS  PubMed  Google Scholar 

  29. Schlondorff G, Mosges R, Meyer-Ebrecht D, Krybus W, Adams L (1989) CAS (computer assisted surgery). Ein neuartiges Verfahren in der Kopf- und Halschirurgie. HNO 37: 187–190

    CAS  PubMed  Google Scholar 

  30. Schurr MO, Arezzo A, Buess GF (1999) Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery. Eur J Cardiothorac Surg [16 Suppl] 2: S97–105

    Article  Google Scholar 

  31. Schurr MO, Breitwieser H, Melzer A, Kunert W, Schmitt M, Voges U, Buess G (1996) Experimental telemanipulation in endoscopic surgery. Surg Laparosc Endosc 6: 167–175

    Article  CAS  PubMed  Google Scholar 

  32. Schurr MO, Buess G, Neisius B, Voges U (2000) Robotics and telemanipulation technologies for endoscopic surgery. A review of the ARTEMIS project. Advanced Robotic Telemanipulator for Minimally Invasive Surgery. Surg Endosc 14: 375–381

    Article  CAS  PubMed  Google Scholar 

  33. Steinhart H, Bumm K, Wurm J, Vogele M, Iro H (2004) Surgical application of a new robotic system for paranasal sinus surgery. Ann Otol Rhinol Laryngol 113: 303–309

    PubMed  Google Scholar 

  34. Stredney D, Wiet GJ, Yagel R et al. (1998) A comparative analysis of integrating visual representations with haptic displays. Stud Health Technol Inform 50: 20–26

    CAS  PubMed  Google Scholar 

  35. Thomsen MN, Lang RD (2004) An experimental comparison of 3-dimensional and 2-dimensional endoscopic systems in a model. Arthroscopy 20: 419–423

    PubMed  Google Scholar 

  36. Varma TRK, Eldridge PR, Forster A et al. (2003) Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery. Stereotact Funct Neurosurg 80: 132–135

    Article  CAS  PubMed  Google Scholar 

  37. Zimmermann M, Krishnan R, Raabe A, Seifert V (2002) Robot-assisted navigated neuroendoscopy. Neurosurgery 51: 1446–1451; discussion 1451–1452

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Strauß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauß, G., Winkler, D., Jacobs, S. et al. Mechatronik in der HNO-Chirurgie. HNO 53, 623–630 (2005). https://doi.org/10.1007/s00106-005-1242-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-005-1242-1

Schlüsselwörter

Keywords

Navigation