Skip to main content
Log in

Effects of chemical modification on the mechanical properties of wood

Einfluss chemischer Modifikation auf die mechanischen Eigenschaften von Holz

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Chemical modification has been recognized as an efficient strategy for dimensionally stabilizing wood and protecting it from environmental damage, such as deterioration due to weathering and fungal decay during the service period. Studies reported in the literature mainly concern the establishment of workable modification techniques, testing methodologies, and assessment of the durability of modified wood. The development of wood modification techniques has recently been reviewed; limited information is however given on the effects of chemical modification on the mechanical properties of wood that are of importance to it as an engineering material. This paper reviews the effects of wood modification, typically by heat treatments and impregnation with low molecular weight resins, reactive monomers, or hot melting paraffins on the mechanical properties of wood. The modifying variables associated with mechanical properties of wood such as wood species, treating temperature and time, catalyst, type of solvent, weight percent gain, and molecular structures of the modifying agent were analysed and the results interpreted. The reasons for changes in the mechanical properties of wood are discussed.

Zusammenfassung

Chemische Modifikation wird als ein wirksames Verfahren zur Verbesserung der Dimensionsstabilität und zum Schutz gegen umweltbedingte Schäden wie zum Beispiel Holzabbau aufgrund von Bewitterung oder Pilzbefall während der Gebrauchsdauer angesehen. In der Literatur vorhandene Studien befassen sich hauptsächlich mit geeigneten Behandlungsverfahren, Prüfmethoden und der Beurteilung der Dauerhaftigkeit von modifiziertem Holz. Die Entwicklung von Holzbehandlungsmethoden wurde kürzlich beschrieben, jedoch gibt es nur wenig Informationen hinsichtlich der Einflüsse einer chemischen Modifikation auf die mechanischen Eigenschaften von Holz im Hinblick auf seine Nutzung als Bau- und Werkstoff. In diesem Artikel werden die Einflüsse einer chemischen Modifikation, üblicherweise durch Hitzebehandlung oder Imprägnierung mit niedermolekularem Harz, reaktiven Monomeren oder heiß schmelzenden Paraffinen, auf die mechanischen Eigenschaften von Holz untersucht. Einflussgrößen auf die mechanischen Eigenschaften von Holz wie Holzart, Behandlungstemperatur und –dauer, Katalysator, Art des Lösungsmittels, prozentuale Gewichtszunahme und molekulare Struktur des Modifiziermittels wurden untersucht und die Ergebnisse diskutiert. Gründe für die Änderungen der mechanischen Eigenschaften wurden erörtert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9

Similar content being viewed by others

References

  • Alén R, Oesch P, Kuoppala E (1995) Py-GC/AED studies on thermochemical behavior of softwood. J Anal Appl Pyrol 35:259–265

    Article  Google Scholar 

  • Alma MH, Hafizolu H, Maldas D (1996) Dimensional stability of several wood species treated with vinyl monomers and polyethylene glycol-1000. Int J Polym Mater 32:93–99

    Article  CAS  Google Scholar 

  • Arnold M (2010) Effect of moisture on the bending properties of thermally modified beech and spruce. J Mater Sci 45:669–680

    Article  CAS  Google Scholar 

  • Barsberg S, Thygesen LG (2009) Poly(furfuryl alcohol) formation in neat furfuryl alcohol and in cymene studied by ATR-IR spectroscopy and density functional theory (B3LYP) prediction of vibrational bands. Vib Spectrosc 49:52–63

    Article  CAS  Google Scholar 

  • Baysal E, Yalinkilic MK, Altinok M, Sonmez A, Peker H, Colak M (2007) Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture. Constr Build Mater 21:1879–1885

    Article  Google Scholar 

  • Bergman R, lbach RE, LaPasha C, Denig J (2009) Evaluating physical property changes for small-diameter, plantation-grown southern pine after in situ polymerization of an acrylic monomer. Forest Prod J 59:64–71

    CAS  Google Scholar 

  • Bhat I, Abdul Khalil HPS, Awang KB, Bakare IO, Issam AM (2010) Effect of weathering on physical, mechanical and morphological properties of chemically modified wood materials. Mater Design 31:4363–4368

    Article  CAS  Google Scholar 

  • Bollmus S, Rademacher P, Krause A, Militz H (2010) Material evaluation and product performance of beech wood modified with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU). In: The Fifth European Conference on Wood Modification. Riga, Latvia

  • Bongers HPM, Beckers EPJ (2003) Mechanical properties of acetylated solid wood treated on pilot plant scale. In: Van Acker J, Hill CAS (eds) The first European conference on wood modification. Ghent, Belgium, pp 341–350

    Google Scholar 

  • Boonstra M (2008) A two-stage thermal modification of wood. PhD thesis, Soil and Forest Management: Henry Poincare University-Nancy, France

  • Cai X, Riedl B, Zhang SY, Wan H (2007) Effects of nanofillers on water resistance and dimensional stability of solid wood modified by melamine-urea-formaldehyde resin. Wood Fiber Sci 39:307–318

    CAS  Google Scholar 

  • Christmas J, Sargent R, Tetri T (2005) Thermal modification of New Zealand Radiata pine. In: Militz H, Hill CAS (eds) The second European conference on wood modification. Göttingen, Germany, pp 83–86

    Google Scholar 

  • Deka M, Saikia CN (2000) Chemical modification of wood with thermosetting resin: effect on dimensional stability and strength property. Bioresource Technol 73:179–181

    Article  CAS  Google Scholar 

  • Deka M, Saikia CN, Baruah KK (2002) Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresource Technol 83:151–157

    Article  Google Scholar 

  • Devi RR, Ali I, Maji TK (2003) Chemical modification of rubber wood with styrene in combination with a crosslinker: effect on dimensional stability and strength proeprty. Bioresource Technol 88:185–188

    Article  CAS  Google Scholar 

  • Dreher WA, Goldstein IS, Cramer GR (1964) Mechanical properties of acetylated wood. Forest Prod J 14:66–68

    Google Scholar 

  • Epmeier H, Kliger R (2005) Experimental study of material properties of modified Scots pine. Eur J Wood Wood Prod 63:430–436

    Article  CAS  Google Scholar 

  • Epmeier H, Westin M, Rapp AO, Nilsson T (2003) Comparison of properties of wood modified by 8 different methods—durability, mechanical and physical properties. In: Van Acker J, Hill CAS (eds) The first European conference on wood modification. Ghent, Belgium, pp 121–142

    Google Scholar 

  • Epmeier H, Westin M, Rapp AO (2004) Differently modified wood: comparison of some selected properties. Scand J Forest Res 19(suppl 5):31–37

    Article  Google Scholar 

  • Epmeier H, Johansson M, Kliger R, Westin M (2007) Bending creep performance of modified timber. Eur J Wood Wood Prod 65:343–351

    Article  CAS  Google Scholar 

  • Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. BioResources 4:370–404

    CAS  Google Scholar 

  • Esteves B, Marques AV, Domingos I, Pereira H (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41:193–207

    Article  CAS  Google Scholar 

  • Esteves B, Nunes L, Pereira H (2011) Properties of furfurylated wood (Pinus pinaster). Eur J Wood Wood Prod 69:521–525

    Article  CAS  Google Scholar 

  • Evans PD, Wallis AF, Owen NL (2000) Weathering of chemically modified wood surfaces: natural weathering of Scots pine acetylated to different weight gains. Wood Sci Technol 34:151–165

    Article  CAS  Google Scholar 

  • Furono T, Imamura Y, Kajita H (2004) The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic resin and resin penetration into wood cell walls. Wood Sci Technol 37:349–361

    Article  Google Scholar 

  • Gabrielli CP, Kamke FA (2010) Phenol-formaldehyde impregnation of densified wood for improved dimensional stability. Wood Sci Technol 44:95–104

    Article  CAS  Google Scholar 

  • Gerhards CC (1982) Effect of moisture content and temperature on the mechanical properties of wood. Wood Fiber 14:4–36

    Google Scholar 

  • Gindl W, Gupta HS (2002) Cell-wall hardness and Young’s modulus of melamine-modified spruce wood by nano-indentation. Compos Part A-Appl S 33:1141–1145

    Article  Google Scholar 

  • Gindl W, Dessipri E, Wimmer R (2002) Using UV-microscopy to study diffusion of melamine-urea-formaldehyde resin in cell walls of spruce wood. Holzforschung 56:103–107

    CAS  Google Scholar 

  • Gindl W, Müller U, Teischinger A (2003) Transverse compression strength and fracture of spruce wood modified by melamine-formaldehyde impregnation of cell walls. Wood Fiber Sci 35:239–246

    CAS  Google Scholar 

  • Gindl W, Hansmann C, Gierlinger N, Schwanninger M, Hinterstoisser B, Jeronimidis G (2004) Using a water-soluble melamine-formaldehyde resin to improve the hardness of Norway spruce wood. J Appl Polym Sci 93:1900–1907

    Article  CAS  Google Scholar 

  • Goldstein IS (1955) The impregnation of wood to impart resistance to alkali and acid. Forest Prod J 5:265–267

    CAS  Google Scholar 

  • Goldstein IS, Dreher WA (1960) Stable furfuryl alcohol impregnating solutions. Ind Eng Chem 52:57–58

    Article  CAS  Google Scholar 

  • Goldstein IS, Jeroski EB, Nielson JF, Weaver JW (1961) Acetylation of wood in lumber thickness. Forest Prod J 11:363–370

    CAS  Google Scholar 

  • González R, Martínez R, Ortiz P (1992a) Polymerization of furfuryl alcohol with trifluoroacetic acid: the influence of experimental conditions. Die Makromol Chem 193:1–9

    Article  Google Scholar 

  • González R, Martínez R, Ortiz P (1992b) Polymerization of furfuryl alcohol with trifluoroacetic acid: the formation of difurfuryl ether. Die Makromol Chem 13:517–523

    Article  Google Scholar 

  • Hansmann C, Deka M, Wimmer R, Gindl W (2006) Artificial weathering of wood surfaces modified by melamine formaldehyde resins. Eur J Wood Wood Prod 64:198–203

    Article  CAS  Google Scholar 

  • Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, Chichester

    Book  Google Scholar 

  • Hill CAS (2011) Wood modification: an update. BioResources 6:918–919

    CAS  Google Scholar 

  • Hill CAS, Abdul Khalil HPS, Hale MD (1988) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crop Prod 8:53–63

    Article  Google Scholar 

  • Hill CAS, Jones D, Strickland G, Cetin NS (1998) Kinetic and mechanistic aspects of the acetylation of wood with acetic anhydride. Holzforschung 52:623–629

    Article  CAS  Google Scholar 

  • Hillis WE (1984) High-temperature and chemical effects on wood stability. Wood Sci Technol 18:281–293

    Article  CAS  Google Scholar 

  • Homan WJ, Jorissen AJM (2004) Wood modification developments. Heron 49:361–386

    Google Scholar 

  • Hon DNS (1995) Stabilization of wood color: is acetylation blocking effective? Wood Fiber Sci 27:360–367

    CAS  Google Scholar 

  • Hoydonckx HE, Van Rhijn WM, Van Rhijn W, Hueting D, Tjeerdsma B, van der Zee M, Van Acker J (2007) Renewable furfuryl resin technology for wood modification. In: Hill CAS, Jones D, Militz H (eds) The third European conference on wood modification. Cardiff, UK, pp 81–86

  • Jamsa S, Viitaniemi P (2001) Heat treatment of wood better durability without chemicals. In: Rapp AO (ed) Seminar of Cost Action E22, Antibes, France

  • Jorissen A, Bongers F, Kattenbroek B, Homan W (2005) The influence of acetylation of Radiata pine in structural sizes on its strength properties. In: Militz H, Hill CAS (eds) The Second European Conference on Wood Modification. Göttingen, Germany

    Google Scholar 

  • Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Eur J Wood Wood Prod 60:1–6

    Article  CAS  Google Scholar 

  • Kocaefe D, Poncsák S, Tang J, Bouazara M (2010) Effect of heat treatment on the mechanical properties of North American jack pine: thermogravimetric study. J Mater Sci 45:681–687

    Article  CAS  Google Scholar 

  • Kollmann FFP, Côté WA Jr (1968) Principles of wood science and technology. Volume I: Solid wood. Springer, Berlin

    Book  Google Scholar 

  • Korkut S, Akgül M, Dündar T (2008) The effects of heat treatment on some technological properties of Scots pine (Pinus szlvestris L.) wood. Bioresource Technol 99:1861–1868

    Article  CAS  Google Scholar 

  • Krause A, Jones D, Van der Zee M, Militz H (2003) Interlace treatment—wood modification with N-methylol compounds. In: Van Acker J, Hill CAS (eds) The First European Conference on Wood Modificaiton. Ghent, Belgium, pp 317–327

    Google Scholar 

  • Krause A, Wepner F, Xie Y, Militz H (2008) Wood protection with dimethylodihydroxy-ethyleneurea and its derivatives. In: Schultz TP, Militz H, Freeman MH, Goodell B, Nicholas DD (eds) Development of commercial wood preservatives: efficacy, environmental, and health issues. ACS Symposium Series; American Chemical Society, Washington, DC, pp 356–371

  • Kretschmann DE (2010) Mechanical properties of wood. Madison, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: General technical report FPL-GTR-190

  • Kubojima Y, Okano T, Ohta M (2000) Bending strength and toughness of heat-treated wood. J Wood Sci 46:8–15

    Article  Google Scholar 

  • Lande S, Westin M, Schneider MH (2004) Properties of furfurylated wood. Scand J Forest Res 19(Sup5):22–30

    Google Scholar 

  • Lande S, Eikenes M, Westin M, Schneider MH (2008) Furfurylation of wood: chemistry, properties, and commercialization. In: Schultz TP, Militz H, Freeman MH, Goodell B, Nicholas DD (eds) Development of commercial wood preservatives: efficacy, environmental, and health issues. ACS Symposium Series; American Chemical Society, Washington, DC, pp 337–355

  • Larsson P, Simonson R (1994) A study of strength, hardness and deformation of acetylated Scandinavian softwoods. Eur J Wood Wood Prod 52:83–86

    Article  CAS  Google Scholar 

  • Lesar B, Humar M (2011) Use of wax emulsions for improvement of wood durability and sorption properties. Eur J Wood Wood Prod 69:231–238

    Article  CAS  Google Scholar 

  • Lesar B, Pavlič M, Petrič M, Škapin AS, Humar M (2011) Wax treatment of wood slows photodegradation. Polym Degrad Stabil 96:1271–1278

    Article  CAS  Google Scholar 

  • Li JZ, Furuno T, Zhou WR, Ren Q, Han XZ, Zhao JP (2009) Properties of acetylated wood prepared at low temperature in the presence of catalysts. J Wood Chem Technol 29:241–250

    Article  CAS  Google Scholar 

  • Li Y, Wang B, Fu Q, Liu Y, Dong X (2010) Performance of wood-polymer composite prepared by in situ synthesis of terpolymer within wood. Appl Mech Mater 34–35:1165–1169

    Article  Google Scholar 

  • Li Y, Liu YX, Wang XM, Wu QL, Yu HP, Li J (2011) Wood-polymer composites prepared by the in situ polymerization of monomers within wood. J Appl Polym Sci 119:3207–3216

    Article  CAS  Google Scholar 

  • Lukowsky D (2002) Influence of the formaldehyde content of waterbased melamine formaldehyde resins on physical properties of Scots pine impregnated therewith. Eur J Wood Wood Prod 60:349–355

    Article  CAS  Google Scholar 

  • Mayes D, Oksanen O (2002) ThermoWood handbook. By: Thermowood, Finnforest, Stora

  • Militz H (1991) Die Verbesserung des Schwind- und Quellverhaltens und der Dauerhaftigkeit von Holz mittels Behandlung mit unkatalysiertem Essigsäureanhydrid. Eur J Wood Wood Prod 49:147–152

    Article  CAS  Google Scholar 

  • Militz H (1993) Treatment of timber with water soluble dimethylol resins to improve their dimensional stability and durability. Wood Sci Technol 27:347–355

    Article  CAS  Google Scholar 

  • Militz H (2002) Thermal treatment of wood: European processes and their background. In: The International Research Group on Wood Protection. IRG/WP 02-40241, Cardiff, Wales, UK

  • Militz H, Peters BC, Fitzgerald CJ (2009) Termite resistance of some modified wood species. In: The International Research Group on Wood Protection, IRG/WP 09-40449. Beijing, China

  • Minato K, Takazawa R, Ogura K (2003) Dependence of reaction kinetics and physical and mechanical properties on the reaction systems of acetylation. II: physical and mechanical properties. J Wood Sci 49:519–524

    Article  Google Scholar 

  • Miroy F, Eymard P, Pizzi A (1995) Wood hardening by methoxymethyl melamine. Eur J Wood Wood Prod 53:276

    Article  CAS  Google Scholar 

  • Mitchell PH (1988) Irreversible property changes of small loblolly pine specimens heated in air, nitrogen, or oxygen. Wood Fiber Sci 20:320–355

    CAS  Google Scholar 

  • Mundigler N, Rettenbacher M (2005) Natwood technology—a material thermal wood modification. In: Hill CAS, Militz H (eds) The Second European Conference on Wood Modification. Göttingen, Germany, pp 270–275

    Google Scholar 

  • Nicholas DD, Williams AD (1987) Dimensional stabilization of wood with dimethylol compounds. In: International Research Group on Wood Protection, IRG/WP87-3412. Stockholm, Sweden

  • Nordstierna L, Lande S, Westin M, Furó I, Brynildsen P (2007) 1H NMR demonstration of chemical bonds between lignin-like model molecules and poly(furfuryl alcohol): relevance to wood furfurylation. In: The Third European Conference of Wood Modification. Cardiff, UK, pp 15–16

  • Nunes L, Nobre T, Rapp AO (2004) Thermally modified wood in choice tests with subterranean termites. In: Seminar of COST E37, Reinbeck

  • Nurmi A, Kokko HRDP, Murphy RJ, Stevens M, Hill CAS (1999) Natural resins as a potential wood processing agent. European project report, Agriculture and Agro-Industry including Fisheries Program of Research and Technological Development (FAIR), Program: Forestry-Wood Chain

  • Papadopoulos AN, Pougioula G (2010) Mechanical behaviour of pine wood chemically modified with a homologous series of linear chain carboxylic acid anhydrides. Bioresource Technol 101:6147–6150

    Article  CAS  Google Scholar 

  • Pittman CU Jr, Kim MG, Nicholas DD, Wang L, Ahmed Kabir FR, Schultz TP, Ingram LL Jr (1994) Wood enhancement treatments I. Impregnation of southern yellow pine with melamine-formaldehyde and melamine-ammeline-formaldehyde resins. J Wood Chem Technol 14:577–603

    Article  CAS  Google Scholar 

  • Plackett DV, Dunningham EA, Singh AP (1992) Weathering of chemically modified wood: accelerated weathering of acetylated radiata pine. Eur J Wood Wood Prod 50:135–140

    Article  CAS  Google Scholar 

  • Poncsák S, Kocaefe D, Bouazara M, Pichette A (2006) Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol 40:647–663

    Article  Google Scholar 

  • Ramsden MJ, Blake FSR, Fey NJ (1997) The effect of acetylation on the mechanical properties, hydrophobicity, and dimensional stability of Pinus sylvestris. Wood Sci Technol 31:97–104

    CAS  Google Scholar 

  • Rapp AO, Sailer M (2000) Heat treatment of wood in Germany—state of the art. In: Proceedings of Seminar ‘Production and development of heat treated wood in Europe’. Helsinki, Stockholm, Oslo

  • Rapp AO, Bestgen H, Adam W, Peek RD (1999) Electron loss spectroscopy (EELS) for quantification of cell-wall penetration of a melamine resin. Holzforschung 53:111–117

    Article  CAS  Google Scholar 

  • Rowell RM (1982) Distribution of acetyl groups in southern pine reacted with acetic anhydride. Wood Sci 15:178–182

    Google Scholar 

  • Rowell RM (2005) Chemical modification of wood. In: Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 381–420

  • Rowell RM (2006) Chemical modification of wood: a short review. Wood Mater Sci Eng 1:29–33

    Article  CAS  Google Scholar 

  • Ryu JY, Imamura Y, Takahashi M (1992) Biological resistance of fufuryl alcohol-treated wood. In: The International Research Group on Wood Protection, IRG/WP 92-3703. Harrogate, UK

  • Schaffert S, Krause A, Militz H (2005) Upscaling and process development for wood modification with N-methylol compounds using superheated steam. In: Militz H, Hill CAS (eds) The Second European Conference on Wood Modification. Göttingen, Germany, pp 161–168

    Google Scholar 

  • Scheiding W, Kruse K, Plaschkies K, Weiß B (2005) Thermally modified wood (TMW) for playground toys: investigations on 13 industrially manufactured products. In: Militz H, Hill CAS (eds) The Second European Conference on Wood Modification. Göttingen, Germany, pp 12–19

    Google Scholar 

  • Schneider M (1994) Wood polymer composites. Wood Fiber Sci 26:142–151

    CAS  Google Scholar 

  • Schneider MH (1995) New cell wall and cell lumen wood polymer composites. Wood Sci Technol 29:121–127

    Article  CAS  Google Scholar 

  • Schneider MH (2006) Furan polymer impregnated wood. Patent, U.S, No. 7008984

  • Schneider MH, Phillips JG (1991) Elasticity of wood and wood polymer composites in tension, compression and bending. Wood Sci Technol 25:361–364

    Article  CAS  Google Scholar 

  • Schneider MH, Phillips JG, Tingley DA, Brebner KI (1990) Mechanical properties of polymer-impregnated sugar maple. Forest Prod J 40:37–41

    CAS  Google Scholar 

  • Scholz G, Krause A, Militz H (2009) Capillary water uptake and mechanical properties of wax soaked Scots pine. In: Englund F, Hill CAS, Militz H, Segerholm BK (eds) The Fourth European Conference on Wood Modification. Stockholm, Sweden

    Google Scholar 

  • Scholz G, Krause A, Militz H (2010a) Exploratory study on the impregnation of Scots pine sapwood (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) with different hot melting waxes. Wood Sci Technol 44:379–388

    Article  CAS  Google Scholar 

  • Scholz G, Krause A, Militz H (2010b) Beeinflussung der Holzfestigkeit durch Wachstränkung. Holztechnologie 51:22–27

    Google Scholar 

  • Scholz G, Nothnick E, Avramidis G, Krause A, Militz H, Viöl W, Wolkenhauer A (2010c) Verklebung von wachsimprägnierter Buche unter Variation der Klebesysteme und Durchführung einer Plasmabehandlung. Eur J Wood Wood Prod 68:315–321

    Article  CAS  Google Scholar 

  • Scholz G, Krause A, Militz H (2012) Volltränkung modifizierten Holzes mit Wachs. Eur J Wood Wood Prod 70:91–98

    Article  CAS  Google Scholar 

  • Shams MI, Yano H, Endou K (2004) Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin I: effects of pressing pressure and pressure holding. J Wood Sci 50:337–342

    CAS  Google Scholar 

  • Shi JL, Kocaefe D, Zhang J (2007) Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Eur J Wood Wood Prod 65:255–259

    Article  Google Scholar 

  • Siau JF (1969) The swelling of basswood by vinyl monomers. Wood Sci 1:250–253

    CAS  Google Scholar 

  • Syrjanen T, Oy K (2001) Production and classification of heat-treated wood in Finland. In: Rapp AO (ed) Seminar of COST Action E22. Antibes, France

    Google Scholar 

  • Thygesen LG, Barsberg S, Venås TM (2010) The fluorescence characteristics of furfurylated wood studied by fluorescence spectroscopy and confocal laser scanning microscopy. Wood Sci Technol 44:51–65

    Article  CAS  Google Scholar 

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Eur J Wood Wood Prod 56:149–153

    Article  CAS  Google Scholar 

  • Tremblay C, Lihra T (2005) Physical properties of thermally modified Balsam fir and Jack pine. In: Militz H, Hill CAS (eds) The Second European Conference on Wood Modification. Göttingen, Germany, pp 74–77

    Google Scholar 

  • Treu A, Pilgård A, Puttmann S, Krause A, Westin M (2009) Material properties of furfurylated wood for window production. In: The International Research Group on Wood Protection, IRG/WP 09-40480. Beijing, China

  • Tsoumis GT (1991) Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold, New York

    Google Scholar 

  • Verma P, Dyckmans J, Militz H, Mai C (2008) Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity. Appl Microbiol Biot 80:125–133

    Article  CAS  Google Scholar 

  • Vernois M (2001) Heat treatment of wood in France—state of the art. In: Rapp AO (ed) Review on heat treatments of wood, Hamburg

  • Viitaniemi P, Jämsä S, Viitanen H (1997) Method for improving biodegradation resistance and dimensional stability of cellulosic products. United States patent, No. US005678324

  • Wacker JP (2010) Use of wood in buildings and bridges. In: Wood handbook: wood as an engineering material. Madison, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: General Technical Resport FPL-GTR-190

  • Westin M, Nilsson T, Hadi YS (1998) Field performance of furfuryl alcohol treated wood. In: The Fourth Pacific Rim Bio-Based Composites Symposium. Bogor, Indonesia, pp 305–312

  • Westin M, Lande S, Schneider M (2003) Furfurylation of wood—process, properties and commercial production. In: Van Acker J, Hill CAS (eds) The first European Conference on wood modification. Ghent, Belgium, pp 289–306

    Google Scholar 

  • Westin M, Lande S, Schneider M (2004) Wood furfurylation process and properties of furfurylated wood. In: The International Research Group on Wood Protection, IRG/WP 04-40289, Ljubljana, Slovenia

  • Winandy JE, Rowell RM (2005) Chemistry of wood strength. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 303–347

    Google Scholar 

  • Xie Y, Krause A, Mai C, Militz H, Richter K, Urban K, Evans PD (2005) Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5-dihydroxyethyleneurea. Polym Degrad Stabil 89:189–199

    Article  CAS  Google Scholar 

  • Xie Y, Krause A, Militz H, Mai C (2006) Coating performance of finishes on wood modified with an N-methylol compound. Prog Org Coat 57:291–300

    Article  CAS  Google Scholar 

  • Xie Y, Krause A, Militz H, Turkulin H, Richter K, Mai C (2007) Effect of treatments with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) on the tensile properties of wood. Holzforschung 61:43–50

    Article  CAS  Google Scholar 

  • Xie Y, Krause A, Militz H, Mai C (2008) Weathering of uncoated and coated wood treatedwithmethylated 1,3-dimethylol-4,5-dihydroxyethyleneurea (mDMDHEU). Eur J Wood Wood Prod 66:455–464

    Article  CAS  Google Scholar 

  • Yildiz ÜC, Yildiz S, Gezer ED (2005) Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey. Bioresource Technol 96:1003–1011

    Article  CAS  Google Scholar 

  • Youngquist JA, Krzysik A, Rowell RM (1986) Dimensional stability of acetylated aspen flakeboard. Wood Fiber Sci 18:90–98

    CAS  Google Scholar 

Download references

Acknowledgments

The Fundamental Research Funds for the Central Universities of China (DL12BB39 and DL12DB02) is gratefully acknowledged. Yanjun Xie thanks the support from the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-11-0608) and the Foundation for Distinguished Young Scholars of Northeast Forestry University. The authors thank Springer for permission license (No. 2915120497338) to use part of data. The colleagues, Dr. Susanne Bollmus and Dr. Martin Arnold are also acknowledged for being able to use their comprehensive information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zefang Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Fu, Q., Wang, Q. et al. Effects of chemical modification on the mechanical properties of wood. Eur. J. Wood Prod. 71, 401–416 (2013). https://doi.org/10.1007/s00107-013-0693-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0693-4

Keywords

Navigation