Skip to main content

Advertisement

Log in

Morphogenesis and maintenance of the 3D thymic medulla and prevention of nude skin phenotype require FoxN1 in pre- and post-natal K14 epithelium

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Expansion of thymic epithelial cysts represents disruption of an organized three-dimensional (3D) thymic epithelial cell (TEC) meshwork, which is crucial for T-lymphocyte development. Although the FoxN1-null mutant develops a rudimentary two-dimensional (2D) cystic thymus, 2D thymic cyst lining resulting from a dGUO culture was reported to be FoxN1-independent; thus, it is unclear whether loss of FoxN1 facilitates cyst formation and whether FoxN1 regulates the morphogenesis and maintenance of the 3D thymic microstructure. Using the loxP-floxed-FoxN1 mouse model, we demonstrated that specific deletion of FoxN1 in keratin (K)-14 promoter-driven TECs induced the loss of 3D thymic medullary structure by producing a large number of morphologic pulmonary alveolar-like 2D epithelial cysts, which increased with age. The cystic lining was positive for differential polarized keratins and had strong claudin-3,4, but reduced MHC-II, expression. However, an increased percentage of claudin-3,4+ TECs, which are presumptive precursors of UEA-1+ and Aire+ mature medullary TECs, failed to promote the development of these mature descendants. Meanwhile, the K14Cre-mediated FoxN1 deletion alone was sufficient to induce a complete hair follicle defect, causing a nude phenotype in the skin, but was not sufficient to cause a complete loss of the thymus. All these changes to occur require deletion of FoxN1 in both prenatal (Cre-recombinase from parents during fertilization) and postnatal (Cre-recombinase from offspring themselves after fertilization) life. These findings provide new insights into FoxN1 regulation of 3D thymic epithelial morphogenesis and maintenance, the distinct impacts of FoxN1 in the K14 epithelial subset of the thymus and skin, and its postnatal requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Aire:

Autoimmune regulator gene

cTEC/mTSCs:

Cortical/medullary thymic epithelial cells

fx:

loxP-floxed-FoxN1

K14Cre:

Keratin-14 promoter-driven Cre-recombinase

LPC:

Lympho-hematopoietic progenitor cells

Tg:

Transgene

TSC:

Thymic stromal cell

WT:

Wild type

References

  1. van Ewijk W, Wang B, Hollander G, Kawamoto H, Spanopoulou E, Itoi M, Amagai T, Jiang YF, Germeraad WT, Chen WF, Katsura Y (1999) Thymic microenvironments, 3-D versus 2-D? Semin Immunol 11:57–64

    Article  PubMed  Google Scholar 

  2. Dooley J, Erickson M, Farr AG (2005) An organized medullary epithelial structure in the normal thymus expresses molecules of respiratory epithelium and resembles the epithelial thymic rudiment of nude mice. J Immunol 175:4331–4337

    PubMed  CAS  Google Scholar 

  3. Farr AG, Dooley JL, Erickson M (2002) Organization of thymic medullary epithelial heterogeneity: implications for mechanisms of epithelial differentiation. Immunol Rev 189:20–27

    Article  PubMed  CAS  Google Scholar 

  4. Vroegindeweij E, Crobach S, Itoi M, Satoh R, Zuklys S, Happe C, Germeraad WT, Cornelissen JJ, Cupedo T, Hollander GA, Kawamoto H, van Ewijk W (2010) Thymic cysts originate from Foxn1 positive thymic medullary epithelium. Mol Immunol 47:1106–1113. doi:10.1016/j.molimm.2009.10.034

    Article  PubMed  CAS  Google Scholar 

  5. Germeraad WT, Kawamoto H, Itoi M, Jiang Y, Amagai T, Katsura Y, van Ewijk W (2003) Development of thymic microenvironments in vitro is oxygen-dependent and requires permanent presence of T-cell progenitors. J Histochem Cytochem 51:1225–1235

    PubMed  CAS  Google Scholar 

  6. Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott HS, Matsumoto M, Minato N (2007) Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 8:304–311

    Article  PubMed  CAS  Google Scholar 

  7. Anderson G, Lane PJ, Jenkinson EJ (2007) Generating intrathymic microenvironments to establish T-cell tolerance. Nat Rev Immunol 7:954–963. doi:10.1038/nri2187

    Article  PubMed  CAS  Google Scholar 

  8. Anderson G, Owen JJ, Moore NC, Jenkinson EJ (1994) Thymic epithelial cells provide unique signals for positive selection of CD4 + CD8+ thymocytes in vitro. J Exp Med 179:2027–2031

    Article  PubMed  CAS  Google Scholar 

  9. Koble C, Kyewski B (2009) The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J Exp Med 206:1505–1513. doi:10.1084/jem.20082449

    Article  PubMed  CAS  Google Scholar 

  10. Villasenor J, Benoist C, Mathis D (2005) AIRE and APECED: molecular insights into an autoimmune disease. Immunol Rev 204:156–164

    Article  PubMed  CAS  Google Scholar 

  11. Fontenot JD, Dooley JL, Farr AG, Rudensky AY (2005) Developmental regulation of Foxp3 expression during ontogeny. J Exp Med 202:901–906

    Article  PubMed  CAS  Google Scholar 

  12. Gallegos AM, Bevan MJ (2006) Central tolerance: good but imperfect. Immunol Rev 209:290–296

    Article  PubMed  Google Scholar 

  13. Klug DB, Carter C, Crouch E, Roop D, Conti CJ, Richie ER (1998) Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci USA 95:11822–11827

    Article  PubMed  CAS  Google Scholar 

  14. Klug DB, Carter C, Gimenez-Conti IB, Richie ER (2002) Cutting edge: thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J Immunol 169:2842–2845

    PubMed  CAS  Google Scholar 

  15. Vassar R, Rosenberg M, Ross S, Tyner A, Fuchs E (1989) Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc Natl Acad Sci USA 86:1563–1567

    Article  PubMed  CAS  Google Scholar 

  16. Kuraguchi M, Ohene-Baah NY, Sonkin D, Bronson RT, Kucherlapati R (2009) Genetic mechanisms in Apc-mediated mammary tumorigenesis. PLoS Genet 5:e1000367. doi:10.1371/journal.pgen.1000367

    Article  PubMed  Google Scholar 

  17. Nehls M, Kyewski B, Messerle M, Waldschutz R, Schuddekopf K, Smith AJ, Boehm T (1996) Two genetically separable steps in the differentiation of thymic epithelium. Science 272:886–889

    Article  PubMed  CAS  Google Scholar 

  18. Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372:103–107

    Article  PubMed  CAS  Google Scholar 

  19. Cunningham-Rundles C, Ponda PP (2005) Molecular defects in T- and B-cell primary immunodeficiency diseases. Nat Rev Immunol 5:880–892

    Article  PubMed  CAS  Google Scholar 

  20. Cheng L, Guo J, Sun L, Fu J, Barnes PF, Metzger D, Chambon P, Oshima RG, Amagai T, Su DM (2010) Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem 285:5836–5847. doi:10.1074/jbc.M109.072124

    Article  PubMed  CAS  Google Scholar 

  21. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127:4775–4785

    PubMed  CAS  Google Scholar 

  22. Su DM, Navarre S, Oh WJ, Condie BG, Manley NR (2003) A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol 4:1128–1135

    Article  PubMed  CAS  Google Scholar 

  23. Dooley J, Erickson M, Farr AG (2008) Alterations of the medullary epithelial compartment in the Aire-deficient thymus: implications for programs of thymic epithelial differentiation. J Immunol 181:5225–5232. doi:181/8/5225

    PubMed  CAS  Google Scholar 

  24. Gui J, Zhu X, Dohkan J, Cheng L, Barnes PF, Su DM (2007) The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol 19:1201–1211. doi:10.1093/intimm/dxm095

    Article  PubMed  CAS  Google Scholar 

  25. Hafner M, Wenk J, Nenci A, Pasparakis M, Scharffetter-Kochanek K, Smyth N, Peters T, Kess D, Holtkotter O, Shephard P, Kudlow JE, Smola H, Haase I, Schippers A, Krieg T, Muller W (2004) Keratin 14 Cre transgenic mice authenticate keratin 14 as an oocyte-expressed protein. Genesis 38:176–181. doi:10.1002/gene.20016

    Article  PubMed  CAS  Google Scholar 

  26. Ramirez A, Page A, Gandarillas A, Zanet J, Pibre S, Vidal M, Tusell L, Genesca A, Whitaker DA, Melton DW, Jorcano JL (2004) A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis 39:52–57. doi:10.1002/gene.20025

    Article  PubMed  CAS  Google Scholar 

  27. Brissette JL, Li J, Kamimura J, Lee D, Dotto GP (1996) The product of the mouse nude locus, Whn, regulates the balance between epithelial cell growth and differentiation. Genes Dev 10:2212–2221

    Article  PubMed  CAS  Google Scholar 

  28. Lee D, Prowse DM, Brissette JL (1999) Association between mouse nude gene expression and the initiation of epithelial terminal differentiation. Dev Biol 208:362–374

    Article  PubMed  CAS  Google Scholar 

  29. Thoman ML (1995) The pattern of T lymphocyte differentiation is altered during thymic involution. Mech Ageing Dev 82:155–170

    Article  PubMed  CAS  Google Scholar 

  30. Aspinall R (1997) Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol 158:3037–3045

    PubMed  CAS  Google Scholar 

  31. Rodewald HR, Paul S, Haller C, Bluethmann H, Blum C (2001) Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414:763–768

    Article  PubMed  CAS  Google Scholar 

  32. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 106:12771–12775. doi:10.1073/pnas.0906850106

    Article  PubMed  CAS  Google Scholar 

  33. Lal-Nag M, Morin PJ (2009) The claudins. Genome Biol 10:235. doi:10.1186/gb-2009-10-8-235

    Article  PubMed  Google Scholar 

  34. Sun L, Guo J, Brown R, Amagai T, Zhao Y, Su DM (2010) Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution. Aging Cell 9:347–357. doi:10.1111/j.1474-9726.2010.00559.x

    Article  PubMed  CAS  Google Scholar 

  35. Mohtashami M, Zuniga-Pflucker JC (2006) Three-dimensional architecture of the thymus is required to maintain delta-like expression necessary for inducing T cell development. J Immunol 176:730–734

    PubMed  CAS  Google Scholar 

  36. Corbeaux T, Hess I, Swann JB, Kanzler B, Haas-Assenbaum A, Boehm T (2010) Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proc Natl Acad Sci USA. doi:10.1073/pnas.1004623107

    PubMed  Google Scholar 

  37. Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441:992–996

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Janice L. Brissette (Massachusetts General Hospital and Harvard Medical School) for providing insightful discussion about skin phenotype and Cre transgenic mouse mating strategies, Dr. Takashi Amagai (Meiji University of Integrative Medicine, Kyoto, Japan) for providing FoxN1 antibody, Dr. Ramesh Nayak (UTHSCT) for confocal microscopy, and Sandra E. Nash (UTHSCT) for cryo-sectioning work.

Conflicts of interest

The authors declare that they have no competing financial interests.

Funding support

This work was supported by the NIAID/NIH grants (R01AI081995 and R21AI079747) to D-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ming Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Rahman, M., Cheng, L. et al. Morphogenesis and maintenance of the 3D thymic medulla and prevention of nude skin phenotype require FoxN1 in pre- and post-natal K14 epithelium. J Mol Med 89, 263–277 (2011). https://doi.org/10.1007/s00109-010-0700-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0700-8

Keywords

Navigation