Skip to main content

Advertisement

Log in

Engineered exosomes emerging from muscle cells break immune tolerance to HER2 in transgenic mice and induce antigen-specific CTLs upon challenge by human dendritic cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We recently described a novel biotechnological platform for the production of unrestricted cytotoxic T lymphocyte (CTL) vaccines. It relies on in vivo engineering of exosomes, i.e., nanovesicles constitutively released by all cells, with full-length antigens of choice upon fusion with an exosome-anchoring protein referred to as Nefmut. They are produced upon intramuscular injection of a DNA vector and, when uploaded with a viral tumor antigen, were found to elicit an immune response inhibiting the tumor growth in a model of transplantable tumors. However, for a possible application in cancer immunotherapy, a number of key issues remained unmet. Among these, we investigated: (i) whether the immunogenic stimulus induced by the engineered exosomes can break immune tolerance, and (ii) their effectiveness when applied in human system. As a model of immune tolerance, we considered mice transgenic for the expression of activated rat HER2/neu which spontaneously develop adenocarcinomas in all mammary glands. When these mice were injected with a DNA vector expressing the product of fusion between Nefmut and the extracellular domain of HER2/neu, antigen-specific CD8+ T lymphocytes became readily detectable. This immune response associated with a HER2-directed CTL activity and a significant delay in tumor development. On the other hand, through cross-priming experiments, we demonstrated the effectiveness of the engineered exosomes emerging from transfected human primary muscle cells in inducing antigen-specific CTLs. We propose our CTL vaccine platform as part of new immunotherapy strategies against tumors expressing self-antigens, i.e., products highly expressed in oncologic lesions but tolerated by the immune system.

Key messages

  • We established a novel, exosome-based method to produce unrestricted CTL vaccines.

  • This strategy is effective in breaking the tolerance towards tumor self-antigens.

  • Our method is also useful to elicit antigen-specific CTL immunity in humans.

  • These findings open the way towards the use of this antitumor strategy in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Di Bonito P, Chiozzini C, Arenaccio C, Anticoli S, Manfredi F, Olivetta E, Ferrantelli F, Falcone E, Ruggieri A, Federico M (2017) Antitumor HPV E7-specific CTL activity elicited by in vivo engineered exosomes produced through DNA inoculation. Int J Nanomedicine 12:4579–4591

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lattanzi L, Federico M (2012) A strategy of antigen incorporation into exosomes: comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles. Vaccine 30(50):7229–7237

    Article  CAS  PubMed  Google Scholar 

  3. Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P, Battistelli M, Falcieri E, Battistin L, Agnati LF, Stocchi V (2010) C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res 316(12):1977–1984

    Article  CAS  PubMed  Google Scholar 

  4. Romancino DP, Paterniti G, Campos Y, De Luca A, Di Felice V, d'Azzo A, Bongiovanni A (2013) Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett 587(9):1379–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schorey JS, Cheng Y, Singh PP, Smith VL (2015) Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 16(1):24–43

    Article  CAS  PubMed  Google Scholar 

  6. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73(10):1907–1920

    Article  CAS  Google Scholar 

  7. Percario ZA, Ali M, Mangino G, Affabris E (2015) Nef, the shuttling molecular adaptor of HIV, influences the cytokine network. Cytokine Growth Factor Rev 26(2):159–173

    Article  CAS  PubMed  Google Scholar 

  8. D'Aloja P, Santarcangelo AC, Arold S, Baur A, Federico M (2001) Genetic and functional analysis of the human immunodeficiency virus (HIV) type 1-inhibiting F12-HiVnef allele. J Gen Virol 82(11):2735–2745

    Article  PubMed  Google Scholar 

  9. Anticoli S, Falcone E, Ruggieri A, Federico M (2016) Engineered exosomes boost the HCV NS3-specific CD8+ T lymphocyte immunity in humans. Trials Vaccinol 5:105–110

    Article  Google Scholar 

  10. Gutierrez C, Schiff R (2011) HER2: biology, detection, and clinical implications. Arch Pathol Lab Med 135(1):55–62

    PubMed  PubMed Central  Google Scholar 

  11. Siegel PM, Muller WJ (1996) Mutations affecting conserved cysteine residues within the extracellular domain of Neu promote receptor dimerization and activation. Proc Natl Acad Sci U S A 93(17):8878–8883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cavallo F, Offringa R, van der Burg SH, Forni G, Melief CJ (2006) Vaccination for treatment and prevention of cancer in animal models. Adv Immunol 90:175–213

    Article  CAS  PubMed  Google Scholar 

  13. Reilly RT, Gottlieb MB, Ercolini AM, Machiels JP, Kane CE, Okoye FI, Muller WJ, Dixon KH, Jaffee EM (2000) HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res 60(13):3569–3576

    CAS  PubMed  Google Scholar 

  14. Rovero S, Amici A, Di Carlo E, Bei R, Nanni P, Quaglino E, Porcedda P, Boggio K, Smorlesi A, Lollini PL, Landuzzi L, Colombo MP, Giovarelli M, Musiani P, Forni G (2000) DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 165(9):5133–5142

    Article  CAS  PubMed  Google Scholar 

  15. Rolla S, Nicoló C, Malinarich S, Orsini M, Forni G, Cavallo F, Ria F (2006) Distinct and non-overlapping T cell receptor repertoires expanded by DNA vaccination in wild-type and HER-2 transgenic BALB/c mice. J Immunol 177(11):7626–7633

    Article  CAS  PubMed  Google Scholar 

  16. Nanni P, Nicoletti G, De Giovanni C, Landuzzi L, Di Carlo E, Cavallo F, Pupa SM, Rossi I, Colombo MP, Ricci C, Astolfi A, Musiani P, Forni G, Lollini PL (2001) Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J Exp Med 194(9):1195–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Halbert CL, Demers GW, Galloway DA (1991) The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 65(1):473–478

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Bonito P, Grasso F, Mochi S, Petrone L, Fanales-Belasio E, Mei A, Cesolini A, Laconi G, Conrad H, Bernhard H, Dembek CJ, Cosma A, Santini SM, Lapenta C, Donati S, Muratori C, Giorgi C, Federico M (2009) Anti-tumor CD8+ T cell immunity elicited by HIV-1-based virus-like particles incorporating HPV-16 E7 protein. Virology 2009(395):45–55

    Article  Google Scholar 

  19. Théry C, Amigorena S, Raposo G, Clayton A (2006)) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3. https://doi.org/10.1002/0471143030.cb0322s30

  20. Rieu S, Géminard C, Rabesandratana H, Sainte-Marie J, Vidal M (2000) Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha4beta1. Eur J Biochem 267(2):583–590

    Article  CAS  PubMed  Google Scholar 

  21. Aricò E, Sestili P, Carpinelli G, Canese R, Cecchetti S, Schiavoni G, D’Urso MT, Belardelli F, Proietti E (2016) Chemo-immunotherapy induces tumor regression in a mouse model of spontaneous mammary carcinogenesis. Oncotarget 7(37):59754–59765

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gritzapis AD, Mahaira LG, Perez SA, Cacoullos NT, Papamichail M, Baxevanis CN (2006) Vaccination with human HER-2/neu (435-443) CTL peptide induces effective antitumor immunity against HER-2/neu-expressing tumor cells in vivo. Cancer Res 66(10):5452–5460

    Article  CAS  PubMed  Google Scholar 

  23. Liang X, Fu TM, Xie X, Emini EA, Shiver JW (2002) Development of HIV-1 Nef vaccine components: immunogenicity study of Nef mutants lacking myristoylation and dileucine motif in mice. Vaccine 20:413–421

    Article  Google Scholar 

  24. Bauer S, Heeg K, Wagner H, Lipford GB (1995) Identification of H-2Kb binding and immunogenic peptides from human papilloma virus tumour antigens E6 and E7. Scand J Immunol 42(3):317–323

    Article  CAS  PubMed  Google Scholar 

  25. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190(6):1079–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T (2012) Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287(2):1397–1405

    Article  CAS  PubMed  Google Scholar 

  29. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247

    Article  CAS  PubMed  Google Scholar 

  30. Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 287(14):10977–10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nanni P, Landuzzi L, Nicoletti G, De Giovanni C, Rossi I, Croci S, Astolfi A, Iezzi M, Di Carlo E, Musiani P, Forni G, Lollini PL (2004) Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent. J Immunol 173(4):2288–2296

    Article  CAS  PubMed  Google Scholar 

  32. Rolla S, Marchini C, Malinarich S, Quaglino E, Lanzardo S, Montani M, Iezzi M, Angeletti M, Ramadori G, Forni G, Cavallo F, Amici A (2008) Protective immunity against neu-positive carcinomas elicited by electroporation of plasmids encoding decreasing fragments of rat neu extracellular domain. Hum Gene Ther 19(3):229–240

    Article  CAS  PubMed  Google Scholar 

  33. Di Bonito P, Ridolfi B, Columba-Cabezas S, Giovannelli A, Chiozzini C, Manfredi F, Anticoli S, Arenaccio C, Federico M (2015) HPV-E7 delivered by engineered exosomes elicits a protective CD8+ T cell-mediated immune response. Viruses 7(3):1079–1099

    Article  PubMed  PubMed Central  Google Scholar 

  34. Busam KJ, Jungbluth AA (1996) Melan-A, a new melanocytic differentiation marker. Adv Anat Pathol 6:12–18

    Article  Google Scholar 

  35. Rivoltini L, Kawakami Y, Sakaguchi K, Southwood S, Sette A, Robbins PF, Marincola FM, Salgaller ML, Yannelli YR, Appella E, Rosenberg SA (1995) Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol 154(5):2257–2265

    CAS  PubMed  Google Scholar 

  36. Fry EA, Taneja P, Inoue K (2016) Clinical applications of mouse models for breast cancer engaging HER2/neu. Integr Cancer Sci Ther 3(5):593–603

    PubMed  PubMed Central  Google Scholar 

  37. Quaglino E, Iezzi M, Mastini C, Amici A, Pericle F, Di Carlo E, Pupa SM, De Giovanni C, Spadaro M, Curcio C, Lollini PL, Musiani P, Forni G, Cavallo F (2004) Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res 64(8):2858–2864

    Article  CAS  PubMed  Google Scholar 

  38. Quaglino E, Mastini C, Iezzi M, Forni G, Musiani P, Klapper LN, Hardy B, Cavallo F (2005) The adjuvant activity of BAT antibody enables DNA vaccination to inhibit the progression of established autochthonous Her-2/neu carcinomas in BALB/c mice. Vaccine 23(25):3280–3287

    Article  CAS  PubMed  Google Scholar 

  39. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331(6024):1565–1570

    Article  CAS  PubMed  Google Scholar 

  40. van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJ (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 16(4):219–233

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant of “Ricerca Finalizzata” project RF-2010-2308334 from the Ministry of Health, Italy. We thank Deborah Pajalunga and Marco Crescenzi, ISS, for kindly providing SKMC; Mario Falchi, ISS, for the confocal microscope analysis; Paola Sestili, Anna M. Pacca, and Fiorella Ciaffoni, ISS, for their support in animal housing and experimentation; and Pietro Arciero, ISS, for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Federico.

Ethics declarations

All animal studies have been approved by the ISS ethics committee. The manuscript does not contain clinical studies or patient data. All studies with animals here described have been approved by the Ethical Committee of the ISS (protocol n. 107/2016-PR) according to Legislative Decree 116/92 which has implemented in Italy the European Directive 86/609/EEC on laboratory animal protection.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anticoli, S., Aricò, E., Arenaccio, C. et al. Engineered exosomes emerging from muscle cells break immune tolerance to HER2 in transgenic mice and induce antigen-specific CTLs upon challenge by human dendritic cells. J Mol Med 96, 211–221 (2018). https://doi.org/10.1007/s00109-017-1617-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1617-2

Keywords

Navigation