Skip to main content
Log in

Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Sepsis is a dysregulated response to severe infection characterized by life-threatening organ failure and is the leading cause of mortality worldwide. Multiple organ failure is the central characteristic of sepsis and is associated with poor outcome of septic patients. Ultrastructural damage to the mitochondria and mitochondrial dysfunction are reported in sepsis. Mitochondrial dysfunction with subsequent ATP deficiency, excessive reactive oxygen species (ROS) release, and cytochrome c release are all considered to contribute to organ failure. Consistent mitochondrial dysfunction leads to reduced mitochondrial quality control capacity, which eliminates dysfunctional and superfluous mitochondria to maintain mitochondrial homeostasis. Mitochondrial quality is controlled through a series of processes including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and transport processes. Several studies have indicated that multiple organ failure is ameliorated by restoring mitochondrial quality control mechanisms and is further amplified by defective quality control mechanisms. This review will focus on advances concerning potential mechanisms in regulating mitochondrial quality control and impacts of mitochondrial quality control on the progression of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rodriguez A, Lisboa T, Blot S (2009) Mortality in ICU patients with bacterial community-acquired pneumonia: when antibiotics are not enough. Intensive Care Med 35(3):430–438

    Article  PubMed  Google Scholar 

  2. Esteban A, Frutos-Vivar F, Ferguson ND, Penuelas O, Lorente JA, Gordo F, Honrubia T, Algora A, Bustos A, Garcia G, Diaz-Reganon IR, de Luna RR (2007) Sepsis incidence and outcome: contrasting the intensive care unit with the hospital ward. Crit Care Med 35:1284–1289

    Article  PubMed  Google Scholar 

  3. Stoller J, Halpin L, Weis M, Aplin B, Qu W, Georgescu C, Nazzal M (2016) Epidemiology of severe sepsis: 2008-2012. J Crit Care 31:58–62

    Article  PubMed  Google Scholar 

  4. Gaieski DF, Edwards JM, Kallan MJ, Carr BG (2013) Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med 41:1167–1174

    Article  PubMed  Google Scholar 

  5. Suarez De La Rica A, Gilsanz F, Maseda E (2016) Epidemiologic trends of sepsis in western countries. Ann Transl Med 4:325

    Article  PubMed  PubMed Central  Google Scholar 

  6. Finfer S (2010) The surviving sepsis campaign: robust evaluation and high-quality primary research is still needed. Intensive Care Med 36:187–189

    Article  PubMed  Google Scholar 

  7. RS Hotchkiss IEK (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150

    Article  Google Scholar 

  8. Nesseler N, Defontaine A, Launey Y, Morcet J, Malledant Y, Seguin P (2013) Long-term mortality and quality of life after septic shock: a follow-up observational study. Intensive Care Med 39:881–888

    Article  CAS  PubMed  Google Scholar 

  9. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, Moldawer LL, Moore FA (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72:1491–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Delano MJ, Ward PA (2016) The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev 274:330–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fattahi F, Ward PA (2017) Understanding immunosuppression after sepsis. Immunity 47:3–5

    Article  CAS  PubMed  Google Scholar 

  12. Hotchkiss RS, Monneret G, Payen D (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Venet F, Monneret G (2018) Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol 14:121–137

    Article  CAS  PubMed  Google Scholar 

  14. Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, Chopin C, Neviere R (2006) Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol 48:377–385

    Article  CAS  PubMed  Google Scholar 

  15. Crouser ED (2004) Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4:729–741

    Article  CAS  PubMed  Google Scholar 

  16. Brealey D, Karyampudi S, Jacques TS, Novelli M, Stidwill R, Taylor V, Smolenski RT, Singer M (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Phys Regul Integr Comp Phys 286:R491–R497

    CAS  Google Scholar 

  17. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  CAS  PubMed  Google Scholar 

  18. Park DW, Zmijewski JW (2017) Mitochondrial dysfunction and immune cell metabolism in sepsis. Infection & Chemotherapy 49:10–21

    Article  Google Scholar 

  19. Oami T, Watanabe E, Hatano M, Teratake Y, Fujimura L, Sakamoto A, Ito C, Toshimori K, Swanson PE, Oda S (2017) Blocking liver autophagy accelerates apoptosis and mitochondrial injury in hepatocytes and reduces time to mortality in a murine sepsis model. Shock 1:427–434

    Google Scholar 

  20. Carre JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, Suliman HB, Piantadosi CA, Mayhew TM, Breen P, Stotz M, Singer M (2010) Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med 182:745–751

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez AS, Elguero ME, Finocchietto P, Holod S, Romorini L, Miriuka SG, Peralta JG, Poderoso JJ, Carreras MC (2014) Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radic Res 48:769–783

    Article  CAS  PubMed  Google Scholar 

  22. Galley HF (2011) Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 107:57–64

    Article  CAS  PubMed  Google Scholar 

  23. Rocha M, Herance R, Rovira S, Hernandez-Mijares A, Victor VM (2012) Mitochondrial dysfunction and antioxidant therapy in sepsis. Infect Disord Drug Targets 12:161–178

    Article  CAS  PubMed  Google Scholar 

  24. Siskind LJ, Kolesnick RN, Colombini M (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 277:26796–26803

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 272:11369–11377

    Article  CAS  PubMed  Google Scholar 

  26. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suliman HB, Carraway MS, Piantadosi CA (2003) Postlipopolysaccharide oxidative damage of mitochondrial DNA. Am J Respir Crit Care Med 167:570–579

    Article  PubMed  Google Scholar 

  28. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dare AJ, Phillips ARJ, Hickey AJR, Mittal A, Loveday B, Thompson N, Windsor JA (2009) A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med 47:1517–1525

    Article  CAS  PubMed  Google Scholar 

  30. Takeyama N, Takagi D, Matsuo N, Kitazawa Y, Tanaka T (1989) Altered hepatic fatty acid metabolism in endotoxicosis: effect of L-carnitine on survival. Am J Phys 256:E31–E38

    CAS  Google Scholar 

  31. Protti A, Carré J, Frost MT, Taylor V, Stidwill R, Rudiger A, Singer M (2007) Succinate recovers mitochondrial oxygen consumption in septic rat skeletal muscle. Crit Care Med 35:2150–2155

    Article  CAS  PubMed  Google Scholar 

  32. Meldrum DR, Ayala A, Chaudry IH (1994) Energetics of lymphocyte “burnout” in late sepsis: adjuvant treatment with ATP-MgCl2 improves energetics and decreases lethality. J Surg Res 56:537–542

    Article  CAS  PubMed  Google Scholar 

  33. Abd el-gawad HM, Khalifa AE (2001) Quercetin, coenzyme Q10, and l-canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol Res 43:257–263

    Article  CAS  PubMed  Google Scholar 

  34. Piel DA, Deutschman CS, Levy RJ (2008) Exogenous cytochrome C restores myocardial cytochrome oxidase activity into the late phase of sepsis. Shock 29:612–616

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lowes DA, Thottakam BM, Webster NR, Murphy MP, Galley HF (2008) The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic Biol Med 45:1559–1565

    Article  CAS  PubMed  Google Scholar 

  36. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    Article  CAS  PubMed  Google Scholar 

  37. Şener G, Toklu H, Kapucu C, Ercan F, Erkanlı G, Kaçmaz A, Tilki M, Yeğen BÇ (2004) Melatonin protects against oxidative organ injury in a rat model of sepsis. Surg Today 35:52–59

    Article  CAS  Google Scholar 

  38. de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF (2016) Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol Adv 34:813–826

    Article  CAS  PubMed  Google Scholar 

  39. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S-890

    Article  CAS  Google Scholar 

  40. Piantadosi CA, Suliman HB (2012) Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes. Biochim Biophys Acta Gen Subj 1820:532–541

    Article  CAS  Google Scholar 

  41. Dhar SS, Ongwijitwat S, Wong-Riley MT (2008) Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 283:3120–3129

    Article  CAS  PubMed  Google Scholar 

  42. Campbell CT, Kolesar JE, Kaufman BA (2012) Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 1819:921–929

    Article  CAS  PubMed  Google Scholar 

  43. Haden DW, Suliman HB, Carraway MS, Welty-Wolf KE, Ali AS, Shitara H, Yonekawa H, Piantadosi CA (2007) Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med 176:768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carchman EH, Whelan S, Loughran P, Mollen K, Stratamirovic S, Shiva S, Rosengart MR, Zuckerbraun BS (2013) Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver. FASEB J 27:4703–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Inata Y, Kikuchi S, Samraj RS, Hake PW, O’Connor M, Ledford JR, O’Connor J, Lahni P, Wolfe V, Piraino G, Zingarelli B (2018) Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway. FASEB J 32:728–741

    Article  CAS  PubMed  Google Scholar 

  46. Chang AL, Ulrich A, Suliman HB, Piantadosi CA (2015) Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radic Biol Med 78:179–189

    Article  CAS  PubMed  Google Scholar 

  47. Vanasco V, Saez T, Magnani ND, Pereyra L, Marchini T, Corach A, Vaccaro MI, Corach D, Evelson P, Alvarez S (2014) Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radic Biol Med 77:1–9

    Article  CAS  PubMed  Google Scholar 

  48. Suliman H, Weltywolf K, Carraway M, Tatro L, Piantadosi C (2004) Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 64:279–288

    Article  CAS  PubMed  Google Scholar 

  49. MacGarvey NC, Suliman HB, Bartz RR, Fu P, Withers CM, Welty-Wolf KE, Piantadosi CA (2012) Activation of mitochondrial biogenesis by heme oxygenase-1-mediated NF-E2-related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am J Respir Crit Care Med 185:851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bullon P, Roman-Malo L, Marin-Aguilar F, Alvarez-Suarez JM, Giampieri F, Battino M, Cordero MD (2015) Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement. Pharmacol Res 91:1–8

    Article  CAS  PubMed  Google Scholar 

  51. Tran M, Tam D, Bardia A, Bhasin M, Rowe GC, Kher A, Zsengeller ZK, Akhavan-Sharif MR, Khankin EV, Saintgeniez M, David S, Burstein D, Karumanchi SA, Stillman IE, Arany Z, Parikh SM (2011) PGC-1alpha promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest 121:4003–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith JA, Stallons LJ, Collier JB, Chavin KD, Schnellmann RG (2015) Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury. J Pharmacol Exp Ther 352:346–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Handschin C, Spiegelman BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454:463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCreath G, Scullion MMF, Lowes DA, Webster NR, Galley HF (2016) Pharmacological activation of endogenous protective pathways against oxidative stress under conditions of sepsis. Br J Anaesth 116:131–139

    Article  CAS  PubMed  Google Scholar 

  55. Kim H-J, Park K-G, Yoo E-K, Kim Y-H, Kim Y-N, Kim H-S, Kim H-T, Park J-Y, Lee K-U, Jang W-G, Kim J-G, Kim B-W, Lee I-K (2007) Effects of PGC-1α on TNF-α–induced MCP-1 and VCAM-1 expression and NF-κB activation in human aortic smooth muscle and endothelial cells. Antioxid Redox Signal 9:301–307

    Article  CAS  PubMed  Google Scholar 

  56. Handschin C, Choi CS, Chin S, Kim S, Kawamori D, Kurpad AJ, Neubauer N, Hu J, Mootha VK, Kim YB, Kulkarni RN, Shulman GI, Spiegelman BM (2007) Abnormal glucose homeostasis in skeletal muscle–specific PGC-1α knockout mice reveals skeletal muscle–pancreatic β cell crosstalk. J Clin Investig 117:3463–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Falagas ME, Makris GC, Matthaiou DK, Rafailidis PI (2008) Statins for infection and sepsis: a systematic review of the clinical evidence. J Antimicrob Chemother 61:774–785

    Article  CAS  PubMed  Google Scholar 

  58. Wan YD, Sun TW, Kan QC, Guan FX, Zhang SG (2014) Effect of statin therapy on mortality from infection and sepsis: a meta-analysis of randomized and observational studies. Crit Care 18:R71

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hondares E, Pineda-Torra I, Iglesias R, Staels B, Villarroya F, Giralt M (2007) PPARdelta, but not PPARalpha, activates PGC-1alpha gene transcription in muscle. Biochem Biophys Res Commun 354:1021–1027

    Article  CAS  PubMed  Google Scholar 

  60. Wegner A, Pavlovic D, Haussmann-Vopel S, Lehmann C (2018) Impact of lipid modulation on the intestinal microcirculation in experimental sepsis. Microvasc Res 120:41–46

    Article  CAS  PubMed  Google Scholar 

  61. Kang H, Khang R, Ham S, Jeong GR, Kim H, Jo M, Lee BD, Lee YI, Jo A, Park C (2017) Activation of the ATF2/CREB-PGC-1alpha pathway by metformin leads to dopaminergic neuroprotection. Oncotarget 8:48603–48618

    PubMed  PubMed Central  Google Scholar 

  62. Vaez H, Rameshrad M, Najafi M, Barar J, Barzegari A, Garjani A (2016) Cardioprotective effect of metformin in lipopolysaccharide-induced sepsis via suppression of toll-like receptor 4 (TLR4) in heart. Eur J Pharmacol 772:115–123

    Article  CAS  PubMed  Google Scholar 

  63. Tang G, Yang H, Chen J, Shi M, Ge L, Ge X, Zhu G (2017) Metformin ameliorates sepsis-induced brain injury by inhibiting apoptosis, oxidative stress and neuroinflammation via the PI3K/Akt signaling pathway. Oncotarget 8:97977–97989

    PubMed  PubMed Central  Google Scholar 

  64. van Vught LA, Scicluna BP, Hoogendijk AJ, Wiewel MA, Klein Klouwenberg PM, Cremer OL, Horn J, Nurnberg P, Bonten MM, Schultz MJ (2016) Association of diabetes and diabetes treatment with the host response in critically ill sepsis patients. Crit Care 20:252. https://doi.org/10.1186/s13054-016-1429-8

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhan M, Brooks C, Liu F, Sun L, Dong Z (2013) Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int 83:568–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brooks C, Dong Z (2007) Regulation of mitochondrial morphological dynamics during apoptosis by Bcl-2 family proteins: a key in Bak? Cell Cycle 6:3043–3047

    Article  CAS  PubMed  Google Scholar 

  67. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  CAS  PubMed  Google Scholar 

  68. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    Article  CAS  PubMed  Google Scholar 

  69. Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287

    Article  CAS  PubMed  Google Scholar 

  70. Loson OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ong SB, Hausenloy DJ (2016) Mitochondrial dynamics as a therapeutic target for treating cardiac diseases. Handb Exp Pharmacol 240:251–279

    Article  CAS  Google Scholar 

  72. Hansen ME, Simmons KJ, Tippetts TS, Thatcher MO, Saito RR, Hubbard ST, Trumbull AM, Parker BA, Taylor OJ, Bikman BT (2015) Lipopolysaccharide disrupts mitochondrial physiology in skeletal muscle via disparate effects on sphingolipid metabolism. Shock 44:585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shen YL, Shi YZ, Chen GG, Wang LL, Zheng MZ, Jin HF, Chen YY (2018) TNF-alpha induces Drp1-mediated mitochondrial fragmentation during inflammatory cardiomyocyte injury. Int J Mol Med 41:2317–2327

    CAS  PubMed  Google Scholar 

  74. Zhao GJ, Yao YM, Lu ZQ, Hong GL, Zhu XM, Wu Y, Wang DW, Dong N, Yu Y, Sheng ZY (2012) Up-regulation of mitofusin-2 protects CD4+ T cells from HMGB1-mediated immune dysfunction partly through Ca(2+)-NFAT signaling pathway. Cytokine 59:79–85

    Article  CAS  PubMed  Google Scholar 

  75. Wu ZS, Yao YM, Hong GL, Xu XP, Liu Y, Dong N, Zheng JY, Lu ZQ, Zhao GJ, Zhu XM, Zhang QH, Sheng ZY (2014) Role of mitofusin-2 in high mobility group box-1 protein-mediated apoptosis of T cells in vitro. Cell Physiol Biochem 33:769–783

    Article  CAS  PubMed  Google Scholar 

  76. Jang DH, Greenwood JC, Owiredu S, Ranganathan A, Eckmann DM (2017) Mitochondrial networking in human blood cells with application in acute care illnesses. Mitochondrion 44:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Deng S, Ai Y, Gong H, Feng Q, Li X, Chen C, Liu Z, Wang Y, Peng Q, Zhang L (2018) Mitochondrial dynamics and protective effects of a mitochondrial division inhibitor, Mdivi-1, in lipopolysaccharide-induced brain damage. Biochem Biophys Res Commun 496:865–871

    Article  CAS  PubMed  Google Scholar 

  78. Yu J, Shi J, Wang D, Dong S, Zhang Y, Wang M, Gong L, Fu Q, Liu D (2016) Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology 125:1190–1201

    Article  CAS  PubMed  Google Scholar 

  79. Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24:69–79

    Article  CAS  PubMed  Google Scholar 

  80. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    Article  CAS  PubMed  Google Scholar 

  81. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  82. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13:378–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20:867–879

    Article  CAS  PubMed  Google Scholar 

  84. Rub C, Wilkening A, Voos W (2017) Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res 367:111–123

    Article  CAS  PubMed  Google Scholar 

  85. Trempe JF, Sauve V, Grenier K, Seirafi M, Tang MY, Menade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G, Nagar B, Fon EA, Gehring K (2013) Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340:1451–1455

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733–744

    Article  CAS  PubMed  Google Scholar 

  87. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–166

    Article  CAS  PubMed  Google Scholar 

  88. Wauer T, Simicek M, Schubert A, Komander D (2015) Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524:370–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20:1726–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Glauser L, Sonnay S, Stafa K, Moore DJ (2011) Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 118:636–645

    Article  CAS  PubMed  Google Scholar 

  93. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton W, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2012) Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 8:e1002537. https://doi.org/10.1371/journal.pgen.1002537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2014) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:1090–1106

    Article  CAS  Google Scholar 

  96. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1-PARKIN mitochondrial Ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60:7–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Piquereau J, Godin R, Deschenes S, Bessi VL, Mofarrahi M, Hussain SN, Burelle Y (2013) Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 9:1837–1851

    Article  CAS  PubMed  Google Scholar 

  99. Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y, Levine B, Hill JA, Wolf SE, Minei JP, Zang QS (2018) Beclin-1-dependent autophagy protects the heart during sepsis. Circulation 138:2247–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mannam P, Shinn AS, Srivastava A, Neamu RF, Walker WE, Bohanon M, Merkel J, Kang MJ, Cruz CSD, Ahasic AM, Pisani MA, Trentalange M, West AP, Shadel GS, Elias JA, Lee PJ (2014) MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am J Phys Lung Cell Mol Phys 306:L604–L619

    CAS  Google Scholar 

  101. Zhang X, Yuan D, Sun Q, Xu L, Lee E, Lewis AJ, Zuckerbraun BS, Rosengart MR (2017) Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis. FASEB J 31:4382–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, Jarman S, Efimov IR, Janks DL, Srivastava A, Bhayani SB, Drewry A, Swanson PE, Hotchkiss RS (2013) Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med 187:509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chien W-S, Chen Y-H, Chiang P-C, Hsiao H-W, Chuang S-M, Lue S-I, Hsu C (2011) Suppression of autophagy in rat liver at late stage of polymicrobial sepsis. Shock 35:506–511

    Article  CAS  PubMed  Google Scholar 

  104. Takahashi W, Watanabe E, Fujimura L, Watanabe-Takano H, Yoshidome H, Swanson PE, Tokuhisa T, Oda S, Hatano M (2013) Kinetics and protective role of autophagy in a mouse cecal ligation and puncture-induced sepsis. Crit Care 17:R160

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lin CW, Lo S, Perng DS, Wu DB, Lee PH, Chang YF, Kuo PL, Yu ML, Yuan SS, Hsieh YC (2014) Complete activation of autophagic process attenuates liver injury and improves survival in septic mice. Shock 41:241–249

    Article  PubMed  Google Scholar 

  106. Thiessen SE, Derese I, Derde S, Dufour T, Pauwels L, Bekhuis Y, Pintelon I, Martinet W, Van den Berghe G, Vanhorebeek I (2017) The role of autophagy in critical illness-induced liver damage. Sci Rep 7:14150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chung KW, Kim KM, Choi YJ, An HJ, Lee B, Kim DH, Lee EK, Im E, Lee J, Im DS, Yu BP, Chung HY (2017) The critical role played by endotoxin-induced liver autophagy in the maintenance of lipid metabolism during sepsis. Autophagy 13:1–17

    Article  CAS  Google Scholar 

  108. Lalazar G, Ilyas G, Malik SA, Liu K, Zhao E, Amir M, Lin Y, Tanaka KE, Czaja MJ (2016) Autophagy confers resistance to lipopolysaccharide-induced mouse hepatocyte injury. Am J Physiol Gastrointest Liver Physiol 311:G377–G386

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hsieh CH, Pai PY, Hsueh HW, Yuan SS, Hsieh YC (2011) Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg 253:1190–1200

    Article  PubMed  Google Scholar 

  110. Yen YT, Yang HR, Lo HC, Hsieh YC, Tsai SC, Hong CW, Hsieh CH (2013) Enhancing autophagy with activated protein C and rapamycin protects against sepsis-induced acute lung injury. Surgery 153:689–698

    Article  PubMed  Google Scholar 

  111. Lo S, Yuan SS, Hsu C, Cheng YJ, Chang YF, Hsueh HW, Lee PH, Hsieh YC (2013) Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Ann Surg 257:352–363

    Article  PubMed  Google Scholar 

  112. Sunahara S, Watanabe E, Hatano M, Swanson PE, Oami T, Fujimura L, Teratake Y, Shimazui T, Lee C, Oda S (2018) Influence of autophagy on acute kidney injury in a murine cecal ligation and puncture sepsis model. Sci Rep 8:1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hsiao HW, Tsai KL, Wang LF, Chen YH, Chiang PC, Chuang SM, Hsu C (2012) The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock 37:289–296

    Article  CAS  PubMed  Google Scholar 

  114. Stana F, Vujovic M, Mayaki D, Leduc-Gaudet JP, Leblanc P, Huck L, Hussain SNA (2017) Differential regulation of the autophagy and proteasome pathways in skeletal muscles in sepsis. Crit Care Med 45:e971–e979

    Article  CAS  PubMed  Google Scholar 

  115. Oami T, Watanabe E, Hatano M, Sunahara S, Fujimura L, Sakamoto A, Ito C, Toshimori K, Oda S (2017) Suppression of T cell autophagy results in decreased viability and function of T cells through accelerated apoptosis in a murine sepsis model. Crit Care Med 45:e77–e85

    Article  CAS  PubMed  Google Scholar 

  116. Arabi YM, Aldawood AS, Haddad SH, Al-Dorzi HM, Tamim HM, Jones G, Mehta S, McIntyre L, Solaiman O, Sakkijha MH (2015) Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med 372:2398–2408

    Article  CAS  PubMed  Google Scholar 

  117. Liu W, Guo J, Mu J, Tian L, Zhou D (2017) Rapamycin protects sepsis-induced cognitive impairment in mouse hippocampus by enhancing autophagy. Cell Mol Neurobiol 37:1195–1205

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported, in part, by grants from the National Natural Science Foundation (grant numbers 81571937 and 81772112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Ming Yao or Zhong-Qiu Lu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Yao, YM. & Lu, ZQ. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med 97, 451–462 (2019). https://doi.org/10.1007/s00109-019-01756-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01756-2

Keywords

Navigation