Skip to main content

Advertisement

Log in

Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Metabolic homeostasis is important for maintaining a healthy lifespan. Lipid metabolism is particularly necessary for the maintenance of metabolic energy sources and their storage, and the structure and function of cell membranes, as well as for the regulation of nutrition through lipogenesis, lipolysis, and lipophagy. Dysfunctional lipid metabolism leads to the development of metabolic disorders, such as atherosclerosis, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). Furthermore, dyslipidaemia causes inflammatory responses and foam cell formation. Mechanistic target of rapamycin (mTOR) signalling is a key regulator of diverse cellular processes, including cell metabolism and cell fate. mTOR complex 1 (mTORC1) is involved in lipid metabolism and immune responses in the body. Therefore, the mTORC1 signalling pathway has been suggested as a potential therapeutic target for the treatment of metabolic disorders. In this review, we focus on the roles of mTORC1 in lipid metabolism and inflammation, and present current evidence on its involvement in the development and progression of metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

mTOR:

Mechanistic target of rapamycin

mTORC1:

MTOR complex 1

PI3K:

Phosphoinositide 3-kinase

PIKK:

PI3K-related kinase

Raptor:

Regulatory protein associated with mTOR

mLST8:

Mammalian lethal with Sec13 protein 8

Deptor:

Dishevelled, Egl-10 and pleckstrin (DEP)–domain-containing mTOR-interacting protein

PRAS40:

Proline-rich AKT substrate 40 kDa

Rictor:

Rapamycin-insensitive companion of mTOR

Protor-1:

Protein observed with Rictor-1

mSIN1:

Mammalian stress-activated protein kinase interacting protein

S6K:

P70 ribosomal S6 kinase

4E-BP1:

Eukaryotic translation initiation factor 4E (eIF4E)–binding protein 1

NAFLD:

Non-alcoholic fatty liver disease

TCA:

Tricarboxylic acid

ACLY:

Acetyl-CoA by ATP citrate lyase

ACC:

Acetyl-CoA carboxylase

FASN:

Fatty acid synthase

SCD:

Stearoyl CoA desaturase

VLDLs:

Very low density lipoproteins

HMGCS:

3-Hydroxy-3-methylglutaryl acetyl-CoA (HMG-CoA) synthase

HMGCR:

HMG-CoA reductase

SREBP:

Sterol regulatory element–binding protein

JMJD1C:

Jumonji domain–containing 1C

LXR:

Liver X receptor

USF-1:

Upstream transcription factor 1

PPAR:

Peroxisome proliferator-activated receptor

C/EBP:

CCAAT/enhancer-binding protein

ATGL:

Adipose triglyceride lipase

HSL:

Hormone-sensitive lipase

TFEB:

Transcription factor EB

IL:

Interleukin

TNF-α:

Tumour necrosis factor α

HIF-1α:

Hypoxia-inducible factor 1α

MGL-1:

Macrophage galactose-type lectin 1

TGF:

Transforming growth factor

STAT6:

Signal transducer and activator of transcription 6

LOX1:

Lectin-type oxidised low-density lipoprotein receptor 1

SR-A:

Scavenger receptor-A

HDL:

High-density lipoprotein

ABCA1:

ATP-binding cassette transporter A family member 1

ABCG1:

ATP-binding cassette subfamily G member 1

CXCL1:

Chemokine (CXC motif) ligand 1

References

  1. Yin X, Willinger CM, Keefe J, Liu J, Fernandez-Ortiz A, Ibanez B, Penalvo J, Adourian A, Chen G, Corella D et al (2020) Lipidomic profiling identifies signatures of metabolic risk. EBioMedicine 51:102520. https://doi.org/10.1016/j.ebiom.2019.10.046

    Article  PubMed  Google Scholar 

  2. Navar-Boggan AM, Peterson ED, D’Agostino RB Sr, Neely B, Sniderman AD, Pencina MJ (2015) Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 131:451–458. https://doi.org/10.1161/CIRCULATIONAHA.114.012477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yaghi S, Elkind MS (2015) Lipids and cerebrovascular disease: research and practice. Stroke 46:3322–3328. https://doi.org/10.1161/STROKEAHA.115.011164

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang QQ, Lu LG (2015) Nonalcoholic fatty liver disease: dyslipidemia, risk for cardiovascular complications, and treatment strategy. J Clin Transl Hepatol 3:78–84. https://doi.org/10.14218/JCTH.2014.00037

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5:150–159. https://doi.org/10.1038/ncpendmet1066

    Article  PubMed  CAS  Google Scholar 

  6. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721. https://doi.org/10.1038/nri3520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325. https://doi.org/10.1038/nature10146

    Article  PubMed  CAS  Google Scholar 

  8. Powell JD, Pollizzi KN, Heikamp EB, Horton MR (2012) Regulation of immune responses by mTOR. Annu Rev Immunol 30:39–68. https://doi.org/10.1146/annurev-immunol-020711-075024

    Article  PubMed  CAS  Google Scholar 

  9. Lamming DW, Sabatini DM (2013) A central role for mTOR in lipid homeostasis. Cell Metab 18:465–469. https://doi.org/10.1016/j.cmet.2013.08.002

    Article  PubMed  CAS  Google Scholar 

  10. Ai D, Jiang H, Westerterp M, Murphy AJ, Wang M, Ganda A, Abramowicz S, Welch C, Almazan F, Zhu Y et al (2014) Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis. Circ Res 114:1576–1584. https://doi.org/10.1161/CIRCRESAHA.114.302313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Li T, Weng J, Zhang Y, Liang K, Fu G, Li Y, Bai X, Gao Y (2019) mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma. Cell Death Dis 10:619. https://doi.org/10.1038/s41419-019-1828-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976. https://doi.org/10.1016/j.cell.2017.02.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594. https://doi.org/10.1242/jcs.051011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125–137. https://doi.org/10.1016/j.cell.2006.08.033

    Article  PubMed  CAS  Google Scholar 

  15. Dibble CC, Manning BD (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15:555–564. https://doi.org/10.1038/ncb2763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kim J, Guan KL (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21:63–71. https://doi.org/10.1038/s41556-018-0205-1

    Article  CAS  PubMed  Google Scholar 

  17. Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N (2014) De novo lipogenesis in health and disease. Metabolism 63:895–902. https://doi.org/10.1016/j.metabol.2014.04.003

    Article  PubMed  CAS  Google Scholar 

  18. Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714. https://doi.org/10.1146/annurev-biochem-061009-102430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN et al (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146:408–420. https://doi.org/10.1016/j.cell.2011.06.034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lee G, Zheng Y, Cho S, Jang C, England C, Dempsey JM, Yu Y, Liu X, He L, Cavaliere PM et al (2017) Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling. Cell 171(1545–1558):e1518. https://doi.org/10.1016/j.cell.2017.10.037

    Article  CAS  Google Scholar 

  21. Eid W, Dauner K, Courtney KC, Gagnon A, Parks RJ, Sorisky A, Zha X (2017) mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci U S A 114:7999–8004. https://doi.org/10.1073/pnas.1705304114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL, Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8:224–236. https://doi.org/10.1016/j.cmet.2008.07.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Castellano BM, Thelen AM, Moldavski O, Feltes M, van der Welle RE, Mydock-McGrane L, Jiang X, van Eijkeren RJ, Davis OB, Louie SM et al (2017) Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science 355:1306–1311. https://doi.org/10.1126/science.aag1417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shimano H, Sato R (2017) SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol 13:710–730. https://doi.org/10.1038/nrendo.2017.91

    Article  PubMed  CAS  Google Scholar 

  25. Viscarra JA, Wang Y, Nguyen HP, Choi YG, Sul HS (2020) Histone demethylase JMJD1C is phosphorylated by mTOR to activate de novo lipogenesis. Nat Commun 11:796. https://doi.org/10.1038/s41467-020-14617-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhou Y, Yu S, Cai C, Zhong L, Yu H, Shen W (2018) LXRa participates in the mTOR/S6K1/SREBP-1c signaling pathway during sodium palmitate-induced lipogenesis in HepG2 cells. Nutr Metab (Lond) 15:31. https://doi.org/10.1186/s12986-018-0268-9

    Article  CAS  Google Scholar 

  27. Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, Sonenberg N (2007) Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Invest 117:387–396. https://doi.org/10.1172/JCI29528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19:R1046-1052. https://doi.org/10.1016/j.cub.2009.09.058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F (2012) FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291. https://doi.org/10.1016/j.cmet.2011.12.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281:40236–40241. https://doi.org/10.1074/jbc.M608048200

    Article  PubMed  CAS  Google Scholar 

  31. Rotondo F, Ho-Palma AC, Remesar X, Fernandez-Lopez JA, Romero MDM, Alemany M (2017) Glycerol is synthesized and secreted by adipocytes to dispose of excess glucose, via glycerogenesis and increased acyl-glycerol turnover. Sci Rep 7:8983. https://doi.org/10.1038/s41598-017-09450-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Grevengoed TJ, Klett EL, Coleman RA (2014) Acyl-CoA metabolism and partitioning. Annu Rev Nutr 34:1–30. https://doi.org/10.1146/annurev-nutr-071813-105541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ma Y, Li J (2015) Metabolic shifts during aging and pathology. Compr Physiol 5:667–686. https://doi.org/10.1002/cphy.c140041

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chakrabarti P, English T, Shi J, Smas CM, Kandror KV (2010) Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59:775–781. https://doi.org/10.2337/db09-1602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Soliman GA, Acosta-Jaquez HA, Fingar DC (2010) mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 45:1089–1100. https://doi.org/10.1007/s11745-010-3488-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Paolella LM, Mukherjee S, Tran CM, Bellaver B, Hugo M, Luongo TS, Shewale SV, Lu W, Chellappa K, Baur JA (2020) mTORC1 restrains adipocyte lipolysis to prevent systemic hyperlipidemia. Mol Metab 32:136–147. https://doi.org/10.1016/j.molmet.2019.12.003

    Article  PubMed  CAS  Google Scholar 

  37. Chakrabarti P, Kim JY, Singh M, Shin YK, Kim J, Kumbrink J, Wu Y, Lee MJ, Kirsch KH, Fried SK et al (2013) Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol Cell Biol 33:3659–3666. https://doi.org/10.1128/MCB.01584-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730. https://doi.org/10.1038/nrd3802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11. https://doi.org/10.1038/cdd.2012.63

    Article  PubMed  CAS  Google Scholar 

  40. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135. https://doi.org/10.1038/nature07976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Meijer AJ, Lorin S, Blommaart EF, Codogno P (2015) Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 47:2037–2063. https://doi.org/10.1007/s00726-014-1765-4

    Article  PubMed  CAS  Google Scholar 

  42. Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18:524–533. https://doi.org/10.1016/j.molmed.2012.05.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Son SM, Park SJ, Stamatakou E, Vicinanza M, Menzies FM, Rubinsztein DC (2020) Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nat Commun 11:3148. https://doi.org/10.1038/s41467-020-16886-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Son SM, Park SJ, Lee H, Siddiqi F, Lee JE, Menzies FM, Rubinsztein DC (2019) Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A. Cell Metab 29(192–201):e197. https://doi.org/10.1016/j.cmet.2018.08.013

    Article  CAS  Google Scholar 

  45. Han J, Wang Y (2018) mTORC1 signaling in hepatic lipid metabolism. Protein Cell 9:145–151. https://doi.org/10.1007/s13238-017-0409-3

    Article  PubMed  CAS  Google Scholar 

  46. Menon D, Salloum D, Bernfeld E, Gorodetsky E, Akselrod A, Frias MA, Sudderth J, Chen PH, DeBerardinis R, Foster DA (2017) Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. J Biol Chem 292:6303–6311. https://doi.org/10.1074/jbc.M116.772988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8:903–914. https://doi.org/10.4161/auto.19653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ et al (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15:647–658. https://doi.org/10.1038/ncb2718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhai C, Cheng J, Mujahid H, Wang H, Kong J, Yin Y, Li J, Zhang Y, Ji X, Chen W (2014) Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PLoS One 9:e90563. https://doi.org/10.1371/journal.pone.0090563

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hubler MJ, Kennedy AJ (2016) Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem 34:1–7. https://doi.org/10.1016/j.jnutbio.2015.11.002

    Article  PubMed  CAS  Google Scholar 

  51. Weichhart T, Hengstschlager M, Linke M (2015) Regulation of innate immune cell function by mTOR. Nat Rev Immunol 15:599–614. https://doi.org/10.1038/nri3901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Miao H, Chen L, Hao L, Zhang X, Chen Y, Ruan Z, Liang H (2015) Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1alpha pathway in chondrocytes. Sci Rep 5:13092. https://doi.org/10.1038/srep13092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Riera-Borrull M, Cuevas VD, Alonso B, Vega MA, Joven J, Izquierdo E, Corbi AL (2017) Palmitate conditions macrophages for enhanced responses toward inflammatory stimuli via JNK activation. J Immunol 199:3858–3869. https://doi.org/10.4049/jimmunol.1700845

    Article  PubMed  CAS  Google Scholar 

  54. Anderson EK, Hill AA, Hasty AH (2012) Stearic acid accumulation in macrophages induces toll-like receptor 4/2-independent inflammation leading to endoplasmic reticulum stress-mediated apoptosis. Arterioscler Thromb Vasc Biol 32:1687–1695. https://doi.org/10.1161/ATVBAHA.112.250142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ao N, Ma Z, Yang J, Jin S, Zhang K, Luo E, Du J (2020) Liraglutide ameliorates lipotoxicity-induced inflammation through the mTORC1 signalling pathway. Peptides 133:170375. https://doi.org/10.1016/j.peptides.2020.170375

    Article  PubMed  CAS  Google Scholar 

  56. Xie QB, Liang Y, Yang M, Yang Y, Cen XM, Yin G (2017) DEPTOR-mTOR signaling is critical for lipid metabolism and inflammation homeostasis of lymphocytes in human PBMC culture. J Immunol Res 2017:5252840. https://doi.org/10.1155/2017/5252840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Karasawa T, Kawashima A, Usui-Kawanishi F, Watanabe S, Kimura H, Kamata R, Shirasuna K, Koyama Y, Sato-Tomita A, Matsuzaka T et al (2018) Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler Thromb Vasc Biol 38:744–756. https://doi.org/10.1161/ATVBAHA.117.310581

    Article  PubMed  CAS  Google Scholar 

  58. Kalugotla G, He L, Weber KJ, Daemen S, Reller A, Razani B, Schilling JD (2019) Frontline Science: Acyl-CoA synthetase 1 exacerbates lipotoxic inflammasome activation in primary macrophages. J Leukoc Biol 106:803–814. https://doi.org/10.1002/JLB.3HI0219-045RR

    Article  PubMed  CAS  Google Scholar 

  59. Snodgrass RG, Boss M, Zezina E, Weigert A, Dehne N, Fleming I, Brune B, Namgaladze D (2016) Hypoxia potentiates palmitate-induced pro-inflammatory activation of primary human macrophages. J Biol Chem 291:413–424. https://doi.org/10.1074/jbc.M115.686709

    Article  PubMed  CAS  Google Scholar 

  60. L’Homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, Legrand-Poels S (2013) Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res 54:2998–3008. https://doi.org/10.1194/jlr.M037861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Camell C, Smith CW (2013) Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue. PLoS One 8:e75147. https://doi.org/10.1371/journal.pone.0075147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Marchix J, Choque B, Kouba M, Fautrel A, Catheline D, Legrand P (2015) Excessive dietary linoleic acid induces proinflammatory markers in rats. J Nutr Biochem 26:1434–1441. https://doi.org/10.1016/j.jnutbio.2015.07.010

    Article  PubMed  CAS  Google Scholar 

  63. Linke M, Fritsch SD, Sukhbaatar N, Hengstschlager M, Weichhart T (2017) mTORC1 and mTORC2 as regulators of cell metabolism in immunity. FEBS Lett 591:3089–3103. https://doi.org/10.1002/1873-3468.12711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kusnadi A, Park SH, Yuan R, Pannellini T, Giannopoulou E, Oliver D, Lu T, Park-Min KH, Ivashkiv LB (2019) The cytokine TNF promotes transcription factor SREBP activity and binding to inflammatory genes to activate macrophages and limit tissue repair. Immunity 51(241–257):e249. https://doi.org/10.1016/j.immuni.2019.06.005

    Article  CAS  Google Scholar 

  65. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. https://doi.org/10.1038/nri3671

    Article  PubMed  CAS  Google Scholar 

  66. Horhold F, Eisel D, Oswald M, Kolte A, Roll D, Osen W, Eichmuller SB, Konig R (2020) Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput Biol 16:e1007657. https://doi.org/10.1371/journal.pcbi.1007657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175:342–349. https://doi.org/10.4049/jimmunol.175.1.342

    Article  PubMed  CAS  Google Scholar 

  68. Remmerie A, Scott CL (2018) Macrophages and lipid metabolism. Cell Immunol 330:27–42. https://doi.org/10.1016/j.cellimm.2018.01.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Koelwyn GJ, Corr EM, Erbay E, Moore KJ (2018) Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol 19:526–537. https://doi.org/10.1038/s41590-018-0113-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Fond AM, Ravichandran KS (2016) Clearance of dying cells by phagocytes: mechanisms and implications for disease pathogenesis. Adv Exp Med Biol 930:25–49. https://doi.org/10.1007/978-3-319-39406-0_2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. McLaren JE, Michael DR, Ashlin TG, Ramji DP (2011) Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 50:331–347. https://doi.org/10.1016/j.plipres.2011.04.002

    Article  PubMed  CAS  Google Scholar 

  72. Huang SC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O’Neill CM et al (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15:846–855. https://doi.org/10.1038/ni.2956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M, Freeman MW (2005) Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 115:2192–2201. https://doi.org/10.1172/JCI24061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Li AC, Glass CK (2002) The macrophage foam cell as a target for therapeutic intervention. Nat Med 8:1235–1242. https://doi.org/10.1038/nm1102-1235

    Article  PubMed  CAS  Google Scholar 

  75. Krauss RM (2004) Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27:1496–1504. https://doi.org/10.2337/diacare.27.6.1496

    Article  PubMed  CAS  Google Scholar 

  76. Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788. https://doi.org/10.1172/JCI20514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Leitinger N, Schulman IG (2013) Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 33:1120–1126. https://doi.org/10.1161/ATVBAHA.112.300173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Hsu HY, Twu YC (2000) Tumor necrosis factor-alpha -mediated protein kinases in regulation of scavenger receptor and foam cell formation on macrophage. J Biol Chem 275:41035–41048. https://doi.org/10.1074/jbc.M003464200

    Article  PubMed  CAS  Google Scholar 

  79. Panousis CG, Evans G, Zuckerman SH (2001) TGF-beta increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells: opposing the effects of IFN-gamma. J Lipid Res 42:856–863

    Article  CAS  PubMed  Google Scholar 

  80. Argmann CA, Van Den Diepstraten CH, Sawyez CG, Edwards JY, Hegele RA, Wolfe BM, Huff MW (2001) Transforming growth factor-beta1 inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants. Arterioscler Thromb Vasc Biol 21:2011–2018. https://doi.org/10.1161/hq1201.099426

    Article  PubMed  CAS  Google Scholar 

  81. Li N, McLaren JE, Michael DR, Clement M, Fielding CA, Ramji DP (2010) ERK is integral to the IFN-gamma-mediated activation of STAT1, the expression of key genes implicated in atherosclerosis, and the uptake of modified lipoproteins by human macrophages. J Immunol 185:3041–3048. https://doi.org/10.4049/jimmunol.1000993

    Article  PubMed  CAS  Google Scholar 

  82. Yvan-Charvet L, Wang N, Tall AR (2010) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30:139–143. https://doi.org/10.1161/ATVBAHA.108.179283

    Article  PubMed  CAS  Google Scholar 

  83. Getz GS, Reardon CA (2019) Apoproteins E, A-I, and SAA in macrophage pathobiology related to atherogenesis. Front Pharmacol 10:536. https://doi.org/10.3389/fphar.2019.00536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Zheng H, Fu Y, Huang Y, Zheng X, Yu W, Wang W (2017) mTOR signaling promotes foam cell formation and inhibits foam cell egress through suppressing the SIRT1 signaling pathway. Mol Med Rep 16:3315–3323. https://doi.org/10.3892/mmr.2017.7032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wang X, Li L, Niu X, Dang X, Li P, Qu L, Bi X, Gao Y, Hu Y, Li M et al (2014) mTOR enhances foam cell formation by suppressing the autophagy pathway. DNA Cell Biol 33:198–204. https://doi.org/10.1089/dna.2013.2164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ma KL, Liu J, Wang CX, Ni J, Zhang Y, Wu Y, Lv LL, Ruan XZ, Liu BC (2013) Activation of mTOR modulates SREBP-2 to induce foam cell formation through increased retinoblastoma protein phosphorylation. Cardiovasc Res 100:450–460. https://doi.org/10.1093/cvr/cvt203

    Article  PubMed  CAS  Google Scholar 

  87. Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13:655–667. https://doi.org/10.1016/j.cmet.2011.03.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zahid MDK, Rogowski M, Ponce C, Choudhury M, Moustaid-Moussa N, Rahman SM (2020) CCAAT/enhancer-binding protein beta (C/EBPbeta) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Mol Cell Biochem 463:211–223. https://doi.org/10.1007/s11010-019-03642-4

    Article  PubMed  CAS  Google Scholar 

  89. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867. https://doi.org/10.1038/nature05485

    Article  CAS  PubMed  Google Scholar 

  90. Lacoste L, Lam JY, Hung J, Letchacovski G, Solymoss CB, Waters D (1995) Hyperlipidemia and coronary disease. Correction of the increased thrombogenic potential with cholesterol reduction. Circulation 92:3172–3177. https://doi.org/10.1161/01.cir.92.11.3172

    Article  PubMed  CAS  Google Scholar 

  91. Kurth T, Everett BM, Buring JE, Kase CS, Ridker PM, Gaziano JM (2007) Lipid levels and the risk of ischemic stroke in women. Neurology 68:556–562. https://doi.org/10.1212/01.wnl.0000254472.41810.0d

    Article  PubMed  CAS  Google Scholar 

  92. Sacco RL, Benson RT, Kargman DE, Boden-Albala B, Tuck C, Lin IF, Cheng JF, Paik MC, Shea S, Berglund L (2001) High-density lipoprotein cholesterol and ischemic stroke in the elderly: the Northern Manhattan Stroke Study. JAMA 285:2729–2735. https://doi.org/10.1001/jama.285.21.2729

    Article  PubMed  CAS  Google Scholar 

  93. Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, Nordestgaard BG (2008) Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA 300:2142–2152. https://doi.org/10.1001/jama.2008.621

    Article  PubMed  CAS  Google Scholar 

  94. Lindsberg PJ, Grau AJ (2003) Inflammation and infections as risk factors for ischemic stroke. Stroke 34:2518–2532. https://doi.org/10.1161/01.STR.0000089015.51603.CC

    Article  PubMed  Google Scholar 

  95. Peng R, Ji H, Jin L, Lin S, Huang Y, Xu K, Yang Q, Sun D, Wu W (2020) Macrophage-based therapies for atherosclerosis management. J Immunol Res 2020:8131754. https://doi.org/10.1155/2020/8131754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zhang X, Sergin I, Evans TD, Jeong SJ, Rodriguez-Velez A, Kapoor D, Chen S, Song E, Holloway KB, Crowley JR et al (2020) High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nat Metab 2:110–125. https://doi.org/10.1038/s42255-019-0162-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ma KL, Liu J, Wang CX, Ni J, Zhang Y, Wu Y, Lv LL, Ruan XZ, Liu BC (2013) Increased mTORC1 activity contributes to atherosclerosis in apolipoprotein E knockout mice and in vascular smooth muscle cells. Int J Cardiol 168:5450–5453. https://doi.org/10.1016/j.ijcard.2013.03.152

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rahman MS, Murphy AJ, Woollard KJ (2017) Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat Rev Cardiol 14:387–400. https://doi.org/10.1038/nrcardio.2017.34

    Article  PubMed  CAS  Google Scholar 

  99. Ali M, Girgis S, Hassan A, Rudick S, Becker RC (2018) Inflammation and coronary artery disease: from pathophysiology to Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Coron Artery Dis 29:429–437. https://doi.org/10.1097/MCA.0000000000000625

    Article  PubMed  Google Scholar 

  100. Yang X, Hei C, Liu P, Song Y, Thomas T, Tshimanga S, Wang F, Niu J, Sun T, Li PA (2015) Inhibition of mTOR pathway by rapamycin reduces brain damage in rats subjected to transient forebrain ischemia. Int J Biol Sci 11:1424–1435. https://doi.org/10.7150/ijbs.12930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ma LL, Ma X, Kong FJ, Guo JJ, Shi HT, Zhu JB, Zou YZ, Ge JB (2018) Mammalian target of rapamycin inhibition attenuates myocardial ischaemia-reperfusion injury in hypertrophic heart. J Cell Mol Med 22:1708–1719. https://doi.org/10.1111/jcmm.13451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Glazer HP, Osipov RM, Clements RT, Sellke FW, Bianchi C (2009) Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling. Cell Cycle 8:1738–1746. https://doi.org/10.4161/cc.8.11.8619

    Article  PubMed  CAS  Google Scholar 

  103. Gao G, Chen W, Yan M, Liu J, Luo H, Wang C, Yang P (2020) Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med 45:195–209. https://doi.org/10.3892/ijmm.2019.4407

    Article  PubMed  CAS  Google Scholar 

  104. Aoyagi T, Kusakari Y, Xiao CY, Inouye BT, Takahashi M, Scherrer-Crosbie M, Rosenzweig A, Hara K, Matsui T (2012) Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 303:H75-85. https://doi.org/10.1152/ajpheart.00241.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Li D, Wang C, Yao Y, Chen L, Liu G, Zhang R, Liu Q, Shi FD, Hao J (2016) mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. FASEB J 30:3388–3399. https://doi.org/10.1096/fj.201600495R

    Article  PubMed  CAS  Google Scholar 

  106. Ho CM, Ho SL, Jeng YM, Lai YS, Chen YH, Lu SC, Chen HL, Chang PY, Hu RH, Lee PH (2019) Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. J Inflamm (Lond) 16:7. https://doi.org/10.1186/s12950-019-0211-5

    Article  Google Scholar 

  107. Wong BX, Kyle RA, Myhill PC, Croft KD, Quinn CM, Jessup W, Yeap BB (2011) Dyslipidemic diabetic serum increases lipid accumulation and expression of stearoyl-CoA desaturase in human macrophages. Lipids 46:931–941. https://doi.org/10.1007/s11745-011-3578-5

    Article  PubMed  CAS  Google Scholar 

  108. Wojcik-Cichy K, Koslinska-Berkan E, Piekarska A (2018) The influence of NAFLD on the risk of atherosclerosis and cardiovascular diseases. Clin Exp Hepatol 4:1–6. https://doi.org/10.5114/ceh.2018.73155

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chatrath H, Vuppalanchi R, Chalasani N (2012) Dyslipidemia in patients with nonalcoholic fatty liver disease. Semin Liver Dis 32:22–29. https://doi.org/10.1055/s-0032-1306423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lefere S, Tacke F (2019) Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism. JHEP Rep 1:30–43. https://doi.org/10.1016/j.jhepr.2019.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kubrusly MS, Correa-Giannella ML, Bellodi-Privato M, de Sa SV, de Oliveira CP, Soares IC, Wakamatsu A, Alves VA, Giannella-Neto D, Bacchella T et al (2010) A role for mammalian target of rapamycin (mTOR) pathway in non alcoholic steatohepatitis related-cirrhosis. Histol Histopathol 25:1123–1131. https://doi.org/10.14670/HH-25.1123

    Article  PubMed  CAS  Google Scholar 

  112. Ardestani A, Lupse B, Kido Y, Leibowitz G, Maedler K (2018) mTORC1 signaling: a double-edged sword in diabetic beta cells. Cell Metab 27:314–331. https://doi.org/10.1016/j.cmet.2017.11.004

    Article  PubMed  CAS  Google Scholar 

  113. Wang Y, Shi M, Fu H, Xu H, Wei J, Wang T, Wang X (2010) Mammalian target of the rapamycin pathway is involved in non-alcoholic fatty liver disease. Mol Med Rep 3:909–915. https://doi.org/10.3892/mmr.2010.365

    Article  PubMed  CAS  Google Scholar 

  114. Li H, Lee J, He C, Zou MH, Xie Z (2014) Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids. Am J Physiol Endocrinol Metab 306:E197-209. https://doi.org/10.1152/ajpendo.00202.2013

    Article  PubMed  CAS  Google Scholar 

  115. Lefkowitch JH, Haythe JH, Regent N (2002) Kupffer cell aggregation and perivenular distribution in steatohepatitis. Mod Pathol 15:699–704. https://doi.org/10.1097/01.MP.0000019579.30842.96

    Article  PubMed  Google Scholar 

  116. Kazankov K, Jorgensen SMD, Thomsen KL, Moller HJ, Vilstrup H, George J, Schuppan D, Gronbaek H (2019) The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 16:145–159. https://doi.org/10.1038/s41575-018-0082-x

    Article  PubMed  CAS  Google Scholar 

  117. Daemen S, Gainullina A, Kalugotla G, He L, Chan MM, Beals JW, Liss KH, Klein S, Feldstein AE, Finck BN et al (2021) Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep 34:108626. https://doi.org/10.1016/j.celrep.2020.108626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Remmerie A, Martens L, Thone T, Castoldi A, Seurinck R, Pavie B, Roels J, Vanneste B, De Prijck S, Vanhockerhout M et al (2020) Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53(641–657):e614. https://doi.org/10.1016/j.immuni.2020.08.004

    Article  CAS  Google Scholar 

  119. Tran S, Baba I, Poupel L, Dussaud S, Moreau M, Gelineau A, Marcelin G, Magreau-Davy E, Ouhachi M, Lesnik P et al (2020) Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53(627–640):e625. https://doi.org/10.1016/j.immuni.2020.06.003

    Article  CAS  Google Scholar 

  120. Kannel WB (1985) Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J 110:1100–1107. https://doi.org/10.1016/0002-8703(85)90224-8

    Article  PubMed  CAS  Google Scholar 

  121. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318. https://doi.org/10.1038/nrm2672

    Article  PubMed  CAS  Google Scholar 

  122. Ward MG, Li G, Hao M (2018) Apoptotic beta-cells induce macrophage reprogramming under diabetic conditions. J Biol Chem 293:16160–16173. https://doi.org/10.1074/jbc.RA118.004565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Yuan T, Rafizadeh S, Gorrepati KD, Lupse B, Oberholzer J, Maedler K, Ardestani A (2017) Reciprocal regulation of mTOR complexes in pancreatic islets from humans with type 2 diabetes. Diabetologia 60:668–678. https://doi.org/10.1007/s00125-016-4188-9

    Article  PubMed  CAS  Google Scholar 

  124. Lu XY, Shi XJ, Hu A, Wang JQ, Ding Y, Jiang W, Sun M, Zhao X, Luo J, Qi W et al (2020) Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature 588:479–484. https://doi.org/10.1038/s41586-020-2928-y

    Article  PubMed  CAS  Google Scholar 

  125. Kaplan M, Aviram M, Hayek T (2012) Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: role of insulin therapy. Pharmacol Ther 136:175–185. https://doi.org/10.1016/j.pharmthera.2012.08.002

    Article  PubMed  CAS  Google Scholar 

  126. Kanter JE, Kramer F, Barnhart S, Averill MM, Vivekanandan-Giri A, Vickery T, Li LO, Becker L, Yuan W, Chait A et al (2012) Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci U S A 109:E715-724. https://doi.org/10.1073/pnas.1111600109

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wang B, Zhong Y, Li Q, Cui L, Huang G (2018) Autophagy of macrophages is regulated by PI3k/Akt/mTOR signalling in the development of diabetic encephalopathy. Aging (Albany NY) 10:2772–2782. https://doi.org/10.18632/aging.101586

    Article  CAS  Google Scholar 

  128. He L, Weber KJ, Diwan A, Schilling JD (2016) Inhibition of mTOR reduces lipotoxic cell death in primary macrophages through an autophagy-independent mechanism. J Leukoc Biol 100:1113–1124. https://doi.org/10.1189/jlb.3A1015-463R

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kurdi A, Martinet W, De Meyer GRY (2018) mTOR Inhibition and cardiovascular diseases: dyslipidemia and atherosclerosis. Transplantation 102:S44–S46. https://doi.org/10.1097/TP.0000000000001693

    Article  PubMed  CAS  Google Scholar 

  130. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695. https://doi.org/10.1016/j.cell.2011.07.030

    Article  PubMed  CAS  Google Scholar 

  131. Suryabhan LL, Chandrashekhar MI, Ratnendra RS, Prerna DN (2013) A comparative study on the fasting and the postprandial dyslipidaemia in type 2 diabetes mellitus. J Clin Diagn Res 7:627–630. https://doi.org/10.7860/JCDR/2013/4845.2868

    Article  CAS  Google Scholar 

  132. Rosing K, Fobker M, Kannenberg F, Gunia S, Dell’Aquila AM, Kwiecien R, Stypmann J, Nofer JR (2013) Everolimus therapy is associated with reduced lipoprotein-associated phospholipase A2 (Lp-Pla2) activity and oxidative stress in heart transplant recipients. Atherosclerosis 230:164–170. https://doi.org/10.1016/j.atherosclerosis.2013.07.007

    Article  PubMed  CAS  Google Scholar 

  133. Favi E, Spagnoletti G, Gargiulo A, Salerno MP, Romagnoli J, Citterio F (2010) Once daily everolimus is safe and effective in de novo renal transplant recipients: six-month results of a pilot study. Transplant Proc 42:1308–1311. https://doi.org/10.1016/j.transproceed.2010.03.099

    Article  PubMed  CAS  Google Scholar 

  134. Morrisett JD, Abdel-Fattah G, Hoogeveen R, Mitchell E, Ballantyne CM, Pownall HJ, Opekun AR, Jaffe JS, Oppermann S, Kahan BD (2002) Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res 43:1170–1180

    Article  CAS  PubMed  Google Scholar 

  135. Schreiber KH, Arriola Apelo SI, Yu D, Brinkman JA, Velarde MC, Syed FA, Liao CY, Baar EL, Carbajal KA, Sherman DS et al (2019) A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat Commun 10:3194. https://doi.org/10.1038/s41467-019-11174-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Alves-Bezerra M, Cohen DE (2017) Triglyceride metabolism in the liver. Compr Physiol 8:1–8. https://doi.org/10.1002/cphy.c170012

    Article  PubMed  PubMed Central  Google Scholar 

  137. Fanning S, Haque A, Imberdis T, Baru V, Barrasa MI, Nuber S, Termine D, Ramalingam N, Ho GPH, Noble T et al (2019) Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment. Mol Cell 73(1001–1014):e1008. https://doi.org/10.1016/j.molcel.2018.11.028

    Article  CAS  Google Scholar 

  138. Vock C, Doring F, Nitz I (2008) Transcriptional regulation of HMG-CoA synthase and HMG-CoA reductase genes by human ACBP. Cell Physiol Biochem 22:515–524. https://doi.org/10.1159/000185525

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1C1C1010613) to So Yeong Cheon and the Basic Science Research Program through the NRF grant funded by the Ministry of Education (NRF-2018R1D1A1B07048587) to KyoungJoo Cho.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.C. designed this study and wrote the manuscript. K.J.C. and S.Y.C. prepared figures and figure legends. K.J.C. and S.Y.C. edited the manuscript. K.J.C. finalised the revised manuscript. All the authors read and approved the final version of this manuscript.

Corresponding author

Correspondence to KyoungJoo Cho.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheon, S.Y., Cho, K. Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1. J Mol Med 99, 1497–1509 (2021). https://doi.org/10.1007/s00109-021-02117-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02117-8

Keywords

Navigation