Skip to main content
Log in

Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae)

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

In a predator–prey system where both intervenients come from the same taxon, one can expect a strong selection on behavioural and morphological traits involved in prey capture. For example, in specialised snake-eating snakes, the predator is unaffetced by the venom of the prey. We predicted that similar adaptations should have evolved in spider-eating (araneophagous) spiders. We investigated potential and actual prey of two Palpimanus spiders (P. gibbulus, P. orientalis) to support the prediction that these are araneophagous predators. Specific behavioural adaptations were investigated using a high-speed camera during staged encounters with prey, while morphological adaptations were investigated using electron microscopy. Both Palpimanus species captured a wide assortment of spider species from various guilds but also a few insect species. Analysis of the potential prey suggested that Palpimanus is a retreat-invading predator that actively searches for spiders that hide in a retreat. Behavioural capture adaptations include a slow, stealthy approach to the prey followed by a very fast attack. Morphological capture adaptations include scopulae on forelegs used in grabbing prey body parts, stout forelegs to hold the prey firmly, and an extremely thick cuticle all over the body preventing injury from a counter bite of the prey. Palpimanus overwhelmed prey that was more than 200% larger than itself. In trials with another araneophagous spider, Cyrba algerina (Salticidae), Palpimanus captured C. algerina in more than 90% of cases independent of the size ratio between the spiders. Evidence indicates that both Palpimanus species possesses remarkable adaptations that increase its efficiency in capturing spider prey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan RA, Elgar MA, Capon RJ (1996) Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proc Roy Soc Lond Biol 263:69–73

    Article  CAS  Google Scholar 

  • Cerveira AM, Jackson RR (2005) Specialised predation by Palpimanus sp. (Araneae: Palpimanidae) on jumping spiders (Araneae: Salticidae). J East Afr Nat Hist 94(2):303–317

    Article  Google Scholar 

  • Clark RJ, Jackson RR (2000) Web use during predatory encounters between Portia fimbriata, an araneophagic jumping spider, and its preferred prey, other jumping spiders. N Z J Ecol 27:129–136

    Google Scholar 

  • Cutler B (1972) Notes on the biology of Mimetus puritanus Chamberlin (Araneae: Mimetidae). Am Midl Nat 87(2):554–555

    Article  Google Scholar 

  • Dalingwater JE (1987) Chelicerate cuticle structure. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 3–15

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Dejean A (1997) Distribution of colonies and prey specialization in the ponerine ant genus Leptogenys (Hymenoptera: Formicidae). Sociobiology 29:293–299

    Google Scholar 

  • Eberhard WG (1980) The natural history and behavior of the bolas spider Mastophora dizzydeani sp. n. (Araneidae). Psyche 87(3–4):143–169

    Article  Google Scholar 

  • Foelix RF, Jackson RR, Henksmeyer A, Hallas S (1984) Tarsal hairs specialized for prey capture in the salticid Portia. In: Krafft B, Leborgne R, Nancy RC (eds) Comptes Rendens du VIIeme Colloque d’Arachnologie. Rev Arachnol 5(4):329–334

  • Guseinov EF (2006) The prey of a lithophilous crab spider Xysticus loeffleri (Araneae, Thomisidae). J Arachnol 34:37–45

    Article  Google Scholar 

  • Guseinov EF, Cerveira AM, Jackson RR (2004) The predatory strategy, natural diet, and life cycle of Cyrba algerina, an araneophagic jumping spider (Salticidae: Spartaeinae) from Azerbaijan. N Z J Zool 31:291–303

    Google Scholar 

  • Hardin JW, Hilbe JM (2003) Generalized estimating equations. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Henschel JR (1997) Psammophily in Namib desert spiders. J Arid Environ 37:695–707

    Article  Google Scholar 

  • Henschel JR, Lubin YD (1997) A test of habitat selection at two spatial scales in a sit-and-wait predator: a web spider in the Namib dunes. J Anim Ecol 66:401–413

    Article  Google Scholar 

  • Heuts BA, Brunt T (2001) Transitive predatory relationships of spider species (Arachnida, Araneae) in laboratory tests. Behav Process 53:57–64

    Article  Google Scholar 

  • Hodek I, Honěk A (1996) Ecology of Coccinellidae. Kluwer, Dordecht

    Google Scholar 

  • Jackson RR (1990a) Predatory versatility and intraspecific interactions in Cyrba algerina and Cyrba ocellata, web-invading spartaeine jumping spiders (Araneae: Salticidae). N Z J Zool 17:157–168

    Google Scholar 

  • Jackson RR (1990b) Predatory and silk utilisation behaviour of Gelotia sp. indet. (Araneae: Salticidae: Spartaeinae), a web-invading aggressive mimic from Sri Lanka. N Z J Zool 17:475–482

    Google Scholar 

  • Jackson RR (1990c) Ambush predatory behaviour of Phaeacius malayensis and Phaeacius sp. indet., spartaeine jumping spiders (Araneae: Salticidae) from tropical Asia. N Z J Zool 17:491–498

    Google Scholar 

  • Jackson RR (1992) Eight-legged tricksters: spiders that specialize at catching other spiders. Bioscience 42:590–598

    Article  Google Scholar 

  • Jackson RR (2000) Prey preferences and visual discrimination ability of Brettus, Cocalus and Cyrba, araneophagic jumping spiders (Araneae: Salticidae) from Australia, Kenya and Sri Lanka. N Z J Ecol 27:29–39

    Google Scholar 

  • Jackson RR, Blest AD (1982) The biology of Portia fimbriata, a web-building jumping spider (Araneae, Salticidae) from Queensland: utilization of webs and predatory versatility. J Zool 196:255–293

    Article  Google Scholar 

  • Jackson RR, Hallas SEA (1986) Predatory versatility and intraspecific interactions of spartaeine jumping spiders (Araneae: Salticidae): Brettus adonis, B. cingulatus, Cyrba algerina and Phaeacius sp. indet. N Z J Zool 13:491–520

    Google Scholar 

  • Jackson RR, Li D (1998) Prey preferences and visual discrimination ability of Cyrba algerina, an araneophagic jumping spider (Araneae: Salticidae) with primitive retinae. Isr J Zool 44:227–242

    Google Scholar 

  • Jackson RR, Li D, Robertson MB (1997) Cues by which suspended-leaf nests of Euryattus (Araneae: Salticidae) females are recognized by conspecific males and by aggressive-mimic salticid, Portia fimbriata. J Zool Lond 243:29–46

    Google Scholar 

  • Jackson RR, Whitehouse MEA (1986) The biology of New Zealand and Queensland pirate spiders (Araneae, Mimetidae): aggressive mimicry, araneophagy and prey specialization. J Zool 210:279–303

    Article  Google Scholar 

  • Jackson RR, Wilcox RS (1990) Aggressive mimicry, prey-specific predatory behaviour and predator-recognition in the predator-prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behav Ecol Sociobiol 26:111–119

    Article  Google Scholar 

  • Jarman EAR, Jackson RR (1986) The biology of Taieria erebus (Araneae, Gnaphosidae), an araneophagic spider from New Zealand: silk utilisation and predatory versatility. N Z J Zool 13:521–541

    Google Scholar 

  • Jocqué R, Dippenaar-Schoeman AS (2006) Spider families of the world. Royal Museum for Central Africa, Tervuren

    Google Scholar 

  • Kloock CT (2001) Diet and insectivory in the “araneophagic” spider, Mimetus notius (Araneae: Mimetidae). Am Midl Nat 146:424–428

    Article  Google Scholar 

  • Land MF (1971) Orientation by jumping spiders in the absence of visual feedback. J Exp Biol 54:119–139

    PubMed  CAS  Google Scholar 

  • Legendre R (1961) Études sur les Archaea (Aranéides). II. La capture des proies et la prise de nourriture. Bull Soc Zool Fr 86:316–319

    Google Scholar 

  • Li D (2000) Prey preference of Phaeacius malayensis, a sprtaeine jumping spider (Araneae: Salticidae) from Singapore. Can J Zool 78:2218–2226

    Google Scholar 

  • Li D, Jackson RR (1996) Prey-specific capture behaviour and prey preferences of myrmicophagic and araneophagic jumping spiders (Araneae: Salticidae). In: Mahnert V (ed) Proceedings of the XIIIth International Congress of Arachnology. Rev Suisse Zool hors serie:423–436.

  • Li D, Jackson RR (1997) Influence of diet on survivorship and growth in Portia fimbriata, an araneophagic jumping spider (Araneae: Salticidae). Can J Zool 75:1652–1658

    Article  Google Scholar 

  • Li D, Jackson RR, Barrion A (1997) Prey preferences of Portia labiata, P. africana, and P. schultzi, araneophagic jumping spiders (Araneae: Salticidae) from the Philippines, Sri Lanka, Kenya, and Uganda. N Z J Zool 24:333–349

    Google Scholar 

  • Li D, Jackson RR, Barrion A (1999) Parental and predatory behaviour of Scytodes sp., an araneophagic spitting spider (Araneae: Scytodidae) from the Philippines. J Zool 247:293–310

    Article  Google Scholar 

  • Li D, Jackson RR, Lim MLM (2003) Influence of background and prey orientation on an ambushing predator’s decisions. Behaviour 140:739–764

    Article  Google Scholar 

  • Lloyd JE (1975) Aggressive mimicry in Photuris fireflies: signal repertoires by femmes fatales. Science 187:452–453

    Article  PubMed  CAS  Google Scholar 

  • Mead R (1988) The design of experiments. Cambridge University Press, Cambridge

    Google Scholar 

  • Michalková V, Pekár S (2009) How glyphosate altered the behaviour of agrobiont spiders (Araneae: Lycosidae) and beetles (Coleoptera: Carabidae). Biol Control 51:444–449

    Article  Google Scholar 

  • Montanucci RR (1989) The relationship of morphology to diet in the horned lizard genus Phrynosoma. Herpetologica 45:208–216

    Google Scholar 

  • Murphy FM (1991) The 1989 presidential address – part 2. Some interesting european spiders. Br J Entomol Nat Hist 4:69–76

    Google Scholar 

  • Nentwig W (1987) The prey of spiders. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 249–263

    Google Scholar 

  • Nentwig W, Wissel C (1986) A comparison of prey lengths among spiders. Oecologia 68:595–600

    Article  Google Scholar 

  • Pekár S (2004) Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). J Arachnol 32(1):31–41

    Article  Google Scholar 

  • Pekár S, Brabec M (2009) Modern analysis of biological data. 1. Generalised linear models in R. Scientia, Prague [in Czech]

  • Pekár S, Král J (2002) Mimicry complex in two central European zodariid spiders (Araneae: Zodariidae): how Zodarion deceives ants. Biol J Linn Soc 75(4):517–532

    Article  Google Scholar 

  • Pekár S, Lubin YD (2003) Habitats and interspecific associations of zodariid spiders in the Negev (Araneae: Zodariidae). Isr J Zool 49(4):255–267

    Article  Google Scholar 

  • Platnick NI (1981) A review of the spider subfamily Palpimaninae (Araneae, Palpimanidae), I. Bull Br Arachnol Soc 5(4):169–173

    Google Scholar 

  • Platnick NI (2011) The world spider catalog, version 11.5. American Museum of Natural History. http://research.amnh.org/iz/spiders/catalog. doi: 10.5531/db.iz.0001.

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Řezáč M, Pekár S, Lubin Y (2008) How oniscophagous spiders overcome woodlouse armour. J Zool 275:64–71

    Article  Google Scholar 

  • Richardson PRK (1987) Food consumption and seasonal variation in the diet of the aardwolf Proteles cristatus in southern Africa. Z Saugetierkunde 52:307–325

    Google Scholar 

  • Schulz S (2004) Semiochemitry of spiders. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 110–150

    Chapter  Google Scholar 

  • Schulz M, Wainer J (1997) Diet of the golden-tipped bat Kerivoula papuensis (Microchiroptera) from north-eastern New South Wales, Australia. J Zool 243(4):653–658

    Article  Google Scholar 

  • Singer MS (2008) Evolutionary ecology of polyphagy. In: Tilmon KJ (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California, Berkeley, pp 29–42

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Stowe MK (1986) Prey specialization in the Araneidae. In: Shear WA (ed) Spiders. Webs, behavior, and evolution. Stanford University Press, Stanford, pp 101–131

    Google Scholar 

  • Tarsitano M, Jackson RR, Kirchner WH (2000) Signals and signal choices made by the araneophagic jumping spider Portia fimbriata while hunting the orb-weaving web spiders Zygiella x-notata and Zosis geniculatus. Ethology 106:595–615

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and CanoDraw User‘s Guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen and České Budějovice.

  • Uetz GW, Halaj J, Cady AB (1999) Guild structure of spiders in major crops. J Arachnol 27:270–280

    Google Scholar 

  • Underwood G (1997) An overview of venomous snake evolution. In: Thorpe RS, Wüster W, Malhotra A (eds) Venomous snakes: ecology, evolution and snakebite. Symp Zool Soc Lond 70:1–13

  • Whitehouse MEA, Lubin Y (1998) Relative seasonal abundance of five spider species in the Negev desert: intraguild interactions and their implications. Isr J Zool 44:187–200

    Google Scholar 

  • Wilcox RS, Jackson RR, Gentile K (1996) Spiderweb smokescreens: spider uses background noise to mask stalking movements. Anim Behav 51:313–326

    Article  Google Scholar 

  • Yeargan KV (1988) Ecology of a bolas spider, Mastophora hutchinsoni: phenology, hunting tactics, and evidence for aggressive chemical mimicry. Oecologia 74:524–530

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Cardoso, R. Jackson, S. Korenko, J. Král, M. Řezáč, and F. Šťáhlavský for providing Palpimanus spiders and three anonymous reviewers for giving useful comments to the manuscript. The study was supported by the E.U. Specific Support Action programme provided by the Jacob Blaustein Center for Scientific Cooperation given to SP and by the grant no. MSM0021622416 provided by the Ministry of Education, Youth and Sports of the Czech Republic. JŠ thanks go to project No. Z4 055 0506 realized at the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague. This is publication no. 736 of the Mitrami Department of Desert Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stano Pekár.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

Footage showing Palpimanus attacking a few prey spider species in real time speed. In the first piece of footage, Palpimanus is aiming to attack Pardosa. Notice the shinning scopulae on the forelegs. In the second piece of footage, Palpimanus captures an agelenid spider. Notice the instant grabbing of the prey body. In the third piece of footage, Palpimanus makes an unsuccessful attack on a zodariid spider. Notice the amputated leg of the zodariid attached to the Palpimanus scopulae on the forelegs after the attack. (MPG 36465 kb)

Video 2

Footage showing Palpimanus attacking Pardosa at a slow rate (recorded at 500 frames s−1). Notice how Palpimanus grabs the prey leg by scopulae on both forelegs and moves the grabbed leg to its chelicera to deliver the bite. Finally, Palpimanus grabs the entire body of the prey with its forelegs and holds it in a basket-like fashion. (M1V 1970 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekár, S., Šobotník, J. & Lubin, Y. Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften 98, 593–603 (2011). https://doi.org/10.1007/s00114-011-0804-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-011-0804-1

Keywords

Navigation