Skip to main content

Advertisement

Log in

Funktionelle MR-Tomographie der Leber

Functional MR imaging of the liver

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Diagnostik diffuser Lebererkrankungen stützt sich klassisch auf die Leberbiopsie und deren histopathologische Analyse. Dieses Verfahren ist allerdings für die Patienten unangenehm und schmerzhaft, birgt v. a. bei Patienten mit Lebererkrankungen ein gewisses Risiko und eignet sich daher nur sehr eingeschränkt zur Verlaufskontrolle bei chronischen Erkrankungen. Die Magnetresonanztomographie (MRT) der Leber nimmt schon jetzt eine zentrale Stellung in der Diagnostik von Raumforderungen der Leber und von Erkrankungen der Gallenwege ein. Darüber hinaus bietet dieses nichtinvasive Verfahren Möglichkeiten, diffuse Erkrankungen des Leberparenchyms zu diagnostizieren und ihren Schweregrad abzuschätzen, z. B. bei nichtalkoholischer Leberverfettung, Hepatitis, Leberfibrose, Zirrhose, Hämochromatose und Siderose und anderen. Folgen einer parenchymatösen Lebererkrankung, wie die portale Hypertension oder eine eingeschränkte Organfunktion, können mithilfe spezieller MRT-Techniken entdeckt und quantifiziert werden. Die vorliegende Arbeit bietet einen Überblick über die dabei angewendeten Methoden und diskutiert die Wertigkeit der funktionellen Leber-MRT im klinischen Zusammenhang.

Abstract

The diagnostics of diffuse liver disease traditionally rely on liver biopsies and histopathological analysis of tissue specimens. However, a liver biopsy is invasive and carries some non-negligible risks, especially for patients with decreased liver function and those requiring repeated follow-up examinations. Over the last decades, magnetic resonance imaging (MRI) has developed into a valuable tool for the non-invasive characterization of focal liver lesions and diseases of the bile ducts. Recently, several MRI methods have been developed and clinically evaluated that also allow the diagnostics and staging of diffuse liver diseases, e. g. non-alcoholic fatty liver disease, hepatitis, hepatic fibrosis, liver cirrhosis, hemochromatosis and hemosiderosis. The sequelae of diffuse liver diseases, such as a decreased liver functional reserve or portal hypertension, can also be detected and quantified by modern MRI methods. This article provides the reader with the basic principles of functional MRI of the liver and discusses the importance in a clinical context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Filingeri V, Sforza D, Tisone G (2015) Complications and risk factors of a large series of percutaneous liver biopsies in patients with liver transplantation or liver disease. Eur Rev Med Pharmacol Sci 19(9):1621–1629

    CAS  PubMed  Google Scholar 

  2. Piccinino F, Sagnelli E, Pasquale G, Giusti G (1986) Complications following percutaneous liver biopsy. A multicentre retrospective study on 68,276 biopsies. J Hepatol 2(2):165–173

    Article  CAS  PubMed  Google Scholar 

  3. Myers RP, Fong A, Shaheen AA (2008) Utilization rates, complications and costs of percutaneous liver biopsy: a population-based study including 4275 biopsies. Liver Int 28(5):705–712

    Article  PubMed  Google Scholar 

  4. Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT, Feng ZZ, Reddy KR, Schiff ER (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97(10):2614–2618

    Article  PubMed  Google Scholar 

  5. Bedossa P, Dargere D, Paradis V (2003) Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 38(6):1449–1457

    Article  PubMed  Google Scholar 

  6. Maximos M, Bril F, Portillo SP, Lomonaco R, Orsak B, Biernacki D, Suman A, Weber M, Cusi K (2015) The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology 61(1):153–160

    Article  CAS  PubMed  Google Scholar 

  7. Goertz RS (2015) Ultrasound elastography. Radiologe 5:5

  8. Breitenseher J, Pones M, Wengert G, Ba-Ssalamah A (2015) Modern imaging of liver metastases. Radiologe 55(1):36–42

  9. Ba-Ssalamah A, Antunes C, Feier D, Bastati N, Hodge JC, Stift J, Cipriano MA, Wrba F, Trauner M, Herold CJ, Caseiro-Alves F (2015) Morphologic and Molecular Features of Hepatocellular Adenoma with Gadoxetic Acid-enhanced MR Imaging. Radiology 277(1):104–113

  10. Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313(22):2263–2273

  11. Ekstedt M, Hagstrom H, Nasr P, Fredrikson M, Stal P, Kechagias S, Hultcrantz R (2015) Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61(5):1547–1554

    Article  CAS  PubMed  Google Scholar 

  12. Koelblinger C, Krssak M, Maresch J, Wrba F, Kaczirek K, Gruenberger T, Tamandl D, Ba-Ssalamah A, Berger-Kulemann V, Weber M, Schima W (2012) Hepatic steatosis assessment with 1H-spectroscopy and chemical shift imaging at 3.0 T before hepatic surgery: reliable enough for making clinical decisions? Eur J Radiol 81(11):2990–2995

    Article  PubMed  Google Scholar 

  13. Hatta T, Fujinaga Y, Kadoya M, Ueda H, Murayama H, Kurozumi M, Ueda K, Komatsu M, Nagaya T, Joshita S, Kodama R, Tanaka E, Uehara T, Sano K, Tanaka N (2010) Accurate and simple method for quantification of hepatic fat content using magnetic resonance imaging: a prospective study in biopsy-proven nonalcoholic fatty liver disease. J Gastroenterol 45(12):1263–1271

    Article  PubMed  Google Scholar 

  14. Kuhn JP, Spoerl MC, Mahlke C, Hegenscheid K (2015) Techniques for quantification of liver fat in risk stratification of diabetics. Radiologe 55(4):308–313

  15. Dendl LM, Schreyer AG (2012) Steatohepatitis – a challenge?. Radiologe 52(8):745–752

  16. Idilman IS, Aniktar H, Idilman R, Kabacam G, Savas B, Elhan A, Celik A, Bahar K, Karcaaltincaba M (2013) Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 267(3):767–775

    Article  PubMed  Google Scholar 

  17. Tang A, Tan J, Sun M, Hamilton G, Bydder M, Wolfson T, Gamst AC, Middleton M, Brunt EM, Loomba R, Lavine JE, Schwimmer JB, Sirlin CB (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267(2):422–431

    Article  PubMed Central  PubMed  Google Scholar 

  18. Tang A, Desai A, Hamilton G, Wolfson T, Gamst A, Lam J, Clark L, Hooker J, Chavez T, Ang BD, Middleton MS, Peterson M, Loomba R, Sirlin CB (2015) Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 274(2):416–425

    Article  PubMed  Google Scholar 

  19. Patel NS, Doycheva I, Peterson MR, Hooker J, Kisselva T, Schnabl B, Seki E, Sirlin CB, Loomba R (2015) Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 13(3):561–568

    Article  PubMed  Google Scholar 

  20. Loomba R, Sirlin CB, Ang B, Bettencourt R, Jain R, Salotti J, Soaft L, Hooker J, Kono Y, Bhatt A, Hernandez L, Nguyen P, Noureddin M, Haufe W, Hooker C, Yin M, Ehman R, Lin GY, Valasek MA, Brenner DA, Richards L (2015) Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology 61(4):1239–1250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kang BK, Yu ES, Lee SS, Lee Y, Kim N, Sirlin CB, Cho EY, Yeom SK, Byun JH, Park SH, Lee MG (2012) Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard. Invest Radiol 47(6):368–375

    Article  CAS  PubMed  Google Scholar 

  22. Lee SS, Park SH (2014) Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroenterol 20(23):7392–7402

    Article  PubMed Central  PubMed  Google Scholar 

  23. McPherson S, Jonsson JR, Cowin GJ, O’Rourke P, Clouston AD, Volp A, Horsfall L, Jothimani D, Fawcett J, Galloway GJ, Benson M, Powell EE (2009) Magnetic resonance imaging and spectroscopy accurately estimate the severity of steatosis provided the stage of fibrosis is considered. J Hepatol 51(2):389–397

    Article  PubMed  Google Scholar 

  24. Cowin GJ, Jonsson JR, Bauer JD, Ash S, Ali A, Osland EJ, Purdie DM, Clouston AD, Powell EE, Galloway GJ (2008) Magnetic resonance imaging and spectroscopy for monitoring liver steatosis. J Magn Reson Imaging 28(4):937–945

    Article  PubMed  Google Scholar 

  25. Parente DB, Rodrigues RS, Paiva FF, Oliveira Neto JA, Machado-Silva L, Lanzoni V, Campos CF, Eiras-Araujo AL, do Brasil PE, Garteiser P, Gomes MB, de Mello Perez R (2014) Is MR spectroscopy really the best MR-based method for the evaluation of fatty liver in diabetic patients in clinical practice? PloS ONE 9(11):e112574

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Valkovic L, Gajdosik M, Traussnigg S, Wolf P, Chmelik M, Kienbacher C, Bogner W, Krebs M, Trauner M, Trattnig S, Krssak M (2014) Application of localized (3)(1)P MRS saturation transfer at 7 T for measurement of ATP metabolism in the liver: reproducibility and initial clinical application in patients with non-alcoholic fatty liver disease. Eur Radiol 24(7):1602–1609

    Article  PubMed  Google Scholar 

  27. Abrigo JM, Shen J, Wong VW, Yeung DK, Wong GL, Chim AM, Chan AW, Choi PC, Chan FK, Chan HL, Chu WC (2014) Non-alcoholic fatty liver disease: spectral patterns observed from an in vivo phosphorus magnetic resonance spectroscopy study. J Hepatol 60(4):809–815

    Article  CAS  PubMed  Google Scholar 

  28. Wu Z, Matsui O, Kitao A, Kozaka K, Koda W, Kobayashi S, Ryu Y, Minami T, Sanada J, Gabata T (2013) Usefulness of Gd-EOB-DTPA-enhanced MR imaging in the evaluation of simple steatosis and nonalcoholic steatohepatitis. J Magn Reson Imaging 37(5):1137–1143

    Article  PubMed  Google Scholar 

  29. Bastati N, Feier D, Wibmer A, Traussnigg S, Balassy C, Tamandl D, Einspieler H, Wrba F, Trauner M, Herold C, Ba-Ssalamah A (2014) Noninvasive differentiation of simple steatosis and steatohepatitis by using gadoxetic acid-enhanced MR imaging in patients with nonalcoholic fatty liver disease: a proof-of-concept study. Radiology 271(3):739–747

    Article  PubMed  Google Scholar 

  30. Kim D, Kim WR, Talwalkar JA, Kim HJ, Ehman RL (2013) Advanced fibrosis in nonalcoholic fatty liver disease: noninvasive assessment with MR elastography. Radiology 268(2):411–419

    Article  PubMed Central  PubMed  Google Scholar 

  31. Xanthakos SA, Podberesky DJ, Serai SD, Miles L, King EC, Balistreri WF, Kohli R (2014) Use of magnetic resonance elastography to assess hepatic fibrosis in children with chronic liver disease. J Pediatr 164(1):186–188

    Article  PubMed  Google Scholar 

  32. Loomba R, Wolfson T, Ang B, Hooker J, Behling C, Peterson M, Valasek M, Lin G, Brenner D, Gamst A, Ehman R, Sirlin C (2014) Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. Hepatology 60(6):1920–1928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Cui J, Ang B, Haufe W, Hernandez C, Verna EC, Sirlin CB, Loomba R (2015) Comparative diagnostic accuracy of magnetic resonance elastography vs. eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease: a prospective study. Aliment Pharmacol Ther 41(12):1271–1280

    Article  CAS  PubMed  Google Scholar 

  34. Chen J, Talwalkar JA, Yin M, Glaser KJ, Sanderson SO, Ehman RL (2011) Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology 259(3):749–756

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lavanchy D (2004) Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 11(2):97–107

    Article  CAS  PubMed  Google Scholar 

  36. Mohd HK, Groeger J, Flaxman AD, Wiersma ST (2013) Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology 57(4):1333–1342

    Article  Google Scholar 

  37. Craxi A, Antonucci G, Camma C (2006) Treatment options in HBV. J Hepatol 44(1 Suppl):77–83

    Article  CAS  Google Scholar 

  38. Dienstag JL, McHutchison JG (2006) American Gastroenterological Association medical position statement on the management of hepatitis C. Gastroenterology 130(1):225–230

    Article  PubMed  Google Scholar 

  39. Leise MD, Kim WR, Canterbury KM, Poterucha JJ (2011) Drug therapy: telaprevir. Hepatology 54(4):1463–1469

    Article  CAS  PubMed  Google Scholar 

  40. Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 37(3):544–555

    Article  PubMed Central  PubMed  Google Scholar 

  41. Singh S, Venkatesh SK, Wang Z, Miller FH, Motosugi U, Low RN, Hassanein T, Asbach P, Godfrey EM, Yin M, Chen J, Keaveny AP, Bridges M, Bohte A, Murad MH, Lomas DJ, Talwalkar JA, Ehman RL (2015) Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol 13(3):440–451 (e446)

    Article  PubMed  Google Scholar 

  42. Ichikawa S, Motosugi U, Morisaka H, Sano K, Ichikawa T, Enomoto N, Matsuda M, Fujii H, Onishi H (2015) Validity and reliability of magnetic resonance elastography for staging hepatic fibrosis in patients with chronic hepatitis B. Magn Reson Med Sci 19:19

    Google Scholar 

  43. Yin M, Glaser KJ, Talwalkar JA, Chen J, Manduca A, Ehman RL (2015) Hepatic MR Elastography: Clinical Performance in a Series of 1377 Consecutive Examinations. Radiology. doi:10.1148/radiol.2015142141. (Epub ahead of print)

    PubMed Central  Google Scholar 

  44. Cho SG, Kim MY, Kim HJ, Kim YS, Choi W, Shin SH, Hong KC, Kim YB, Lee JH, Suh CH (2001) Chronic hepatitis: in vivo proton MR spectroscopic evaluation of the liver and correlation with histopathologic findings. Radiology 221(3):740–746

    Article  CAS  PubMed  Google Scholar 

  45. Orlacchio A, Bolacchi F, Angelico M, Mancini A, Cozzolino V, Cadioli M, Simonetti G (2008) In vivo, high-field, 3-Tesla 1H MR spectroscopic assessment of liver fibrosis in HCV-correlated chronic liver disease. Radiol Med 113(2):289–299

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Q, Zhang HM, Qi WQ, Zhang YG, Zhao P, Jiao J, Wang JB, Zhang CY (2015) 3.0T (1)H magnetic resonance spectroscopy for assessment of steatosis in patients with chronic hepatitis C. World J Gastroenterol 21(21):6736–6744

    Article  PubMed Central  PubMed  Google Scholar 

  47. Milner KL, Jenkins AB, Trenell M, Tid-Ang J, Samocha-Bonet D, Weltman M, Xu A, George J, Chisholm DJ (2014) Eradicating hepatitis C virus ameliorates insulin resistance without change in adipose depots. J Viral Hepat 21(5):325–332

    Article  CAS  PubMed  Google Scholar 

  48. Rubbia-Brandt L, Fabris P, Paganin S, Leandro G, Male PJ, Giostra E, Carlotto A, Bozzola L, Smedile A, Negro F (2004) Steatosis affects chronic hepatitis C progression in a genotype specific way. Gut 53(3):406–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Cheng FK, Torres DM, Harrison SA (2014) Hepatitis C and lipid metabolism, hepatic steatosis, and NAFLD: still important in the era of direct acting antiviral therapy? J Viral Hepat 21(1):1–8

    Article  CAS  PubMed  Google Scholar 

  50. Lim AK, Patel N, Eckersley RJ, Fitzpatrick J, Crossey MM, Hamilton G, Goldin RD, Thomas HC, Vennart W, Cosgrove DO, Taylor-Robinson SD (2011) A comparison of 31P magnetic resonance spectroscopy and microbubble-enhanced ultrasound for characterizing hepatitis c-related liver disease. J Viral Hepat 18(10):e530–e534

    Article  CAS  PubMed  Google Scholar 

  51. Lim AK, Patel N, Hamilton G, Hajnal JV, Goldin RD, Taylor-Robinson SD (2003) The relationship of in vivo 31P MR spectroscopy to histology in chronic hepatitis C. Hepatology 37(4):788–794

    Article  CAS  PubMed  Google Scholar 

  52. Lim AK, Patel N, Hamilton G, Mylvahan K, Kuo YT, Goldin RD, Taylor-Robinson SD (2007) 31P MR spectroscopy in assessment of response to antiviral therapy for hepatitis C virus-related liver disease. AJR 189(4):819–823

    Article  PubMed  Google Scholar 

  53. Zhang CY, Zhang Q, Zhang HM, Yang HS (2014) 3.0T 31P MR spectroscopy in assessment of response to antiviral therapy for chronic hepatitis C. World J Gastroenterol 20(8):2107–2112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Watanabe H, Kanematsu M, Goshima S, Kondo H, Onozuka M, Moriyama N, Bae KT (2011) Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging – preliminary observations. Radiology 259(1):142–150

    Article  PubMed  Google Scholar 

  55. Nishie A, Asayama Y, Ishigami K, Tajima T, Kakihara D, Nakayama T, Takayama Y, Okamoto D, Taketomi A, Shirabe K, Fujita N, Obara M, Yoshimitsu K, Honda H (2012) MR prediction of liver fibrosis using a liver-specific contrast agent: Superparamagnetic iron oxide versus Gd-EOB-DTPA. J Magn Reson Imaging 36(3):664–671

    Article  PubMed  Google Scholar 

  56. Chen BB, Hsu CY, Yu CW, Wei SY, Kao JH, Lee HS, Shih TT (2012) Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients. Eur Radiol 22(1):171–180

    Article  PubMed  Google Scholar 

  57. Goshima S, Kanematsu M, Watanabe H, Kondo H, Kawada H, Moriyama N, Bae KT (2012) Gd-EOB-DTPA-enhanced MR imaging: prediction of hepatic fibrosis stages using liver contrast enhancement index and liver-to-spleen volumetric ratio. J Magn Reson Imaging 36(5):1148–1153

    Article  PubMed  Google Scholar 

  58. Balassy C, Feier D, Peck-Radosavljevic M, Wrba F, Witoszynskyj S, Kiefer B, Reiter G, Dai Y, Ba-Ssalamah A (2014) Susceptibility-weighted MR imaging in the grading of liver fibrosis: a feasibility study. Radiology 270(1):149–158

    Article  PubMed  Google Scholar 

  59. Allkemper T, Sagmeister F, Cicinnati V, Beckebaum S, Kooijman H, Kanthak C, Stehling C, Heindel W (2014) Evaluation of fibrotic liver disease with whole-liver T1rho MR imaging: a feasibility study at 1.5 T. Radiology 271(2):408–415

    Article  PubMed  Google Scholar 

  60. Moff SL, Kamel IR, Eustace J, Lawler LP, Kantsevoy S, Kalloo AN, Thuluvath PJ (2006) Diagnosis of primary sclerosing cholangitis: a blinded comparative study using magnetic resonance cholangiography and endoscopic retrograde cholangiography. Gastrointest Endosc 64(2):219–223

    Article  PubMed  Google Scholar 

  61. Berstad AE, Aabakken L, Smith HJ, Aasen S, Boberg KM, Schrumpf E (2006) Diagnostic accuracy of magnetic resonance and endoscopic retrograde cholangiography in primary sclerosing cholangitis. Clin Gastroenterol Hepatol 4(4):514–520

    Article  PubMed  Google Scholar 

  62. Ahrar H, Jafarpishe MS, Hekmatnia A, Solouki R, Emami MH (2014) Magnetic resonance cholangiography compared with endoscopic retrograde cholangiography in the diagnosis of primary sclerosing cholangitis. J Res Med Sci 19(12):1150–1154

    PubMed Central  PubMed  Google Scholar 

  63. Ruiz A, Lemoinne S, Carrat F, Corpechot C, Chazouilleres O, Arrive L (2014) Radiologic course of primary sclerosing cholangitis: assessment by three-dimensional magnetic resonance cholangiography and predictive features of progression. Hepatology 59(1):242–250

    Article  PubMed  Google Scholar 

  64. Nolz R, Asenbaum U, Schoder M, Wibmer A, Einspieler H, Prusa AM, Peck-Radosavljevic M, Ba-Ssalamah A (2014) Diagnostic workup of primary sclerosing cholangitis: the benefit of adding gadoxetic acid-enhanced T1-weighted magnetic resonance cholangiography to conventional T2-weighted magnetic resonance cholangiography. Clin Radiol 69(5):499–508

    Article  CAS  PubMed  Google Scholar 

  65. Ringe KI, Hinrichs J, Merkle EM, Weismuller TJ, Wacker F, Meyer BC (2014) Gadoxetate disodium in patients with primary sclerosing cholangitis: an analysis of hepatobiliary contrast excretion. J Magn Reson Imaging 40(1):106–112

    Article  PubMed  Google Scholar 

  66. Husarik DB, Gupta RT, Ringe KI, Boll DT, Merkle EM (2011) Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents. Acad Radiol 18(12):1549–1554

    Article  PubMed  Google Scholar 

  67. Nilsson H, Blomqvist L, Douglas L, Nordell A, Jacobsson H, Hagen K, Bergquist A, Jonas E (2014) Dynamic gadoxetate-enhanced MRI for the assessment of total and segmental liver function and volume in primary sclerosing cholangitis. J Magn Reson Imaging 39(4):879–886

    Article  PubMed  Google Scholar 

  68. Hinrichs H, Hinrichs JB, Gutberlet M, Lenzen H, Raatschen HJ, Wacker F, Ringe KI (2015) Functional gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC). Eur Radiol 24:24

    Google Scholar 

  69. Kovac JD, Jesic R, Stanisavljevic D, Kovac B, Maksimovic R (2013) MR imaging of primary sclerosing cholangitis: additional value of diffusion-weighted imaging and ADC measurement. Acta Radiol 54(3):242–248

    Article  PubMed  Google Scholar 

  70. Lewin M, Vilgrain V, Ozenne V, Lemoine M, Wendum D, Paradis V, Ziol M, Arrive L, Beaugrand M, Poupon R, Valla D, Chazouilleres O, Corpechot C (2009) Prevalence of sclerosing cholangitis in adults with autoimmune hepatitis: a prospective magnetic resonance imaging and histological study. Hepatology 50(2):528–537

    Article  PubMed  Google Scholar 

  71. Garcia-Tsao G, Groszmann RJ, Fisher RL, Conn HO, Atterbury CE, Glickman M (1985) Portal pressure, presence of gastroesophageal varices and variceal bleeding. Hepatology 5(3):419–424

    Article  CAS  PubMed  Google Scholar 

  72. Schwabl P, Bota S, Salzl P, Mandorfer M, Payer BA, Ferlitsch A, Stift J, Wrba F, Trauner M, Peck-Radosavljevic M, Reiberger T (2015) New reliability criteria for transient elastography increase the number of accurate measurements for screening of cirrhosis and portal hypertension. Liver Int 35(2):381–390

    Article  PubMed  Google Scholar 

  73. Colecchia A, Montrone L, Scaioli E, Bacchi-Reggiani ML, Colli A, Casazza G, Schiumerini R, Turco L, Di Biase AR, Mazzella G, Marzi L, Arena U, Pinzani M, Festi D (2012) Measurement of spleen stiffness to evaluate portal hypertension and the presence of esophageal varices in patients with HCV-related cirrhosis. Gastroenterology 143(3):646–654

    Article  PubMed  Google Scholar 

  74. Ronot M, Lambert S, Elkrief L, Doblas S, Rautou PE, Castera L, Vilgrain V, Sinkus R, Van Beers BE, Garteiser P (2014) Assessment of portal hypertension and high-risk oesophageal varices with liver and spleen three-dimensional multifrequency MR elastography in liver cirrhosis. Eur Radiol 24(6):1394–1402

    PubMed  Google Scholar 

  75. Shin SU, Lee JM, Yu MH, Yoon JH, Han JK, Choi BI, Glaser KJ, Ehman RL (2014) Prediction of esophageal varices in patients with cirrhosis: usefulness of three-dimensional MR elastography with echo-planar imaging technique. Radiology 272(1):143–153

    Article  PubMed Central  PubMed  Google Scholar 

  76. Nedredal GI, Yin M, McKenzie T, Lillegard J, Luebke-Wheeler J, Talwalkar J, Ehman R, Nyberg SL (2011) Portal hypertension correlates with splenic stiffness as measured with MR elastography. J Magn Reson Imaging 34(1):79–87

    Article  PubMed Central  PubMed  Google Scholar 

  77. Guo J, Buning C, Schott E, Kroncke T, Braun J, Sack I, Althoff C (2015) In vivo abdominal magnetic resonance elastography for the assessment of portal hypertension before and after transjugular intrahepatic portosystemic shunt implantation. Invest Radiol 50(5):347–351

    Article  CAS  PubMed  Google Scholar 

  78. Klasen J, Lanzman RS, Wittsack HJ, Kircheis G, Schek J, Quentin M, Antoch G, Haussinger D, Blondin D (2013) Diffusion-weighted imaging (DWI) of the spleen in patients with liver cirrhosis and portal hypertension. Magn Reson Imaging 31(7):1092–1096

    Article  PubMed  Google Scholar 

  79. Roldan-Alzate A, Frydrychowicz A, Niespodzany E, Landgraf BR, Johnson KM, Wieben O, Reeder SB (2013) In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J Magn Reson Imaging 37(5):1100–1108

    Article  PubMed Central  PubMed  Google Scholar 

  80. Frydrychowicz A, Landgraf BR, Niespodzany E, Verma RW, Roldan-Alzate A, Johnson KM, Wieben O, Reeder SB (2011) Four-dimensional velocity mapping of the hepatic and splanchnic vasculature with radial sampling at 3 tesla: a feasibility study in portal hypertension. J Magn Reson Imaging 34(3):577–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Aguirre-Reyes DF, Sotelo JA, Arab JP, Arrese M, Tejos R, Irarrazaval P, Tejos C, Uribe SA, Andia ME (2015) Intrahepatic portal vein blood volume estimated by non-contrast Magnetic Resonance Imaging for the assessment of portal hypertension. Magn Reson Imaging 24(15):00161–00167

    Google Scholar 

  82. Brittenham GM, Badman DG (2003) Noninvasive measurement of iron: report of an NIDDK workshop. Blood 101(1):15–19

    Article  CAS  PubMed  Google Scholar 

  83. Hernando D, Levin YS, Sirlin CB, Reeder SB (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 40(5):1003–1021

    Article  PubMed Central  PubMed  Google Scholar 

  84. Sarigianni M, Liakos A, Vlachaki E, Paschos P, Athanasiadou E, Montori VM, Murad MH, Tsapas A (2015) Accuracy of magnetic resonance imaging in diagnosis of liver iron overload: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 13(1):55–63

    Article  PubMed  Google Scholar 

  85. Karlo C, Reiner CS, Stolzmann P, Breitenstein S, Marincek B, Weishaupt D, Frauenfelder T (2010) CT- and MRI-based volumetry of resected liver specimen: comparison to intraoperative volume and weight measurements and calculation of conversion factors. Eur J Radiol 75(1):e107–e111

    Article  CAS  PubMed  Google Scholar 

  86. McCormack L, Petrowsky H, Jochum W, Furrer K, Clavien PA (2007) Hepatic steatosis is a risk factor for postoperative complications after major hepatectomy: a matched case-control study. Ann Surg 245(6):923–930

    Article  PubMed Central  PubMed  Google Scholar 

  87. Ward J, Guthrie JA, Sheridan MB, Boyes S, Smith JT, Wilson D, Wyatt JI, Treanor D, Robinson PJ (2008) Sinusoidal obstructive syndrome diagnosed with superparamagnetic iron oxide-enhanced magnetic resonance imaging in patients with chemotherapy-treated colorectal liver metastases. J Clin Oncol 26(26):4304–4310

    Article  PubMed  Google Scholar 

  88. Shin NY, Kim MJ, Lim JS, Park MS, Chung YE, Choi JY, Kim KW, Park YN (2012) Accuracy of gadoxetic acid-enhanced magnetic resonance imaging for the diagnosis of sinusoidal obstruction syndrome in patients with chemotherapy-treated colorectal liver metastases. Eur Radiol 22(4):864–871

    Article  PubMed  Google Scholar 

  89. Cho SH, Kang UR, Kim JD, Han YS, Choi DL (2011) The value of gadoxetate disodium-enhanced MR imaging for predicting posthepatectomy liver failure after major hepatic resection: a preliminary study. Eur J Radiol 80(2):e195–e200

    Article  PubMed  Google Scholar 

  90. Wibmer A, Prusa AM, Nolz R, Gruenberger T, Schindl M, Ba-Ssalamah A (2013) Liver failure after major liver resection: risk assessment by using preoperative Gadoxetic acid-enhanced 3-T MR imaging. Radiology 269(3):777–786

    Article  PubMed  Google Scholar 

  91. Tandon P, Ney M, Irwin I, Ma MM, Gramlich L, Bain VG, Esfandiari N, Baracos V, Montano-Loza AJ, Myers RP (2012) Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl 18(10):1209–1216

    Article  PubMed  Google Scholar 

  92. Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, Baracos VE, Sawyer MB, Pang JX, Beaumont C, Esfandiari N, Myers RP (2015) Inclusion of Sarcopenia within MELD (MELD-Sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol 6(6):e102

    Article  PubMed  Google Scholar 

  93. Hamaguchi Y, Kaido T, Okumura S, Fujimoto Y, Ogawa K, Mori A, Hammad A, Tamai Y, Inagaki N, Uemoto S (2014) Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. Liver Transpl 20(11):1413–1419

    Article  PubMed  Google Scholar 

  94. Krell RW, Kaul DR, Martin AR, Englesbe MJ, Sonnenday CJ, Cai S, Malani PN (2013) Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl 19(12):1396–1402

    Article  PubMed  Google Scholar 

  95. Wibmer A, Aliya Q, Steininger R, Trauner M, Maresch J, Muhlbacher F, Ba-Ssalamah A (2012) Liver transplantation: impaired biliary excretion of gadoxate is associated with an inferior 1-year retransplantation-free survival. Invest Radiol 47(6):353–358

    Article  CAS  PubMed  Google Scholar 

  96. Lee VS, Miller FH, Omary RA, Wang Y, Ganger DR, Wang E, Rao S, Levitsky J (2011) Magnetic resonance elastography and biomarkers to assess fibrosis from recurrent hepatitis C in liver transplant recipients. Transplantation 92(5):581–586

    Article  PubMed  Google Scholar 

  97. Perumpail RB, Levitsky J, Wang Y, Lee VS, Karp J, Jin N, Yang GY, Bolster BD Jr., Shah S, Zuehlsdorff S, Nemcek AA Jr., Larson AC, Miller FH, Omary RA (2012) MRI-guided biopsy to correlate tissue specimens with MR elastography stiffness readings in liver transplants. Acad Radiol 19(9):1121–1126

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wibmer.

Ethics declarations

Interessenkonflikt

A. Wibmer, R. Nolz, M. Trauner und A. Ba-Ssalamah geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wibmer, A., Nolz, R., Trauner, M. et al. Funktionelle MR-Tomographie der Leber. Radiologe 55, 1057–1066 (2015). https://doi.org/10.1007/s00117-015-0032-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-015-0032-3

Schlüsselwörter

Keywords

Navigation