Skip to main content
Log in

Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Resveratrol is a phytoalexin produced in various plants like wine, peanut or pine in response to fungal infection or UV irradiation, but it is absent in members of the Brassicaceae. Moreover, resveratrol and its glucoside (piceid) are considered to have beneficial effects on human health, known to reduce heart disease, arteriosclerosis and cancer mortality. Therefore, the introduction of the gene encoding stilbene synthase for resveratrol production in rapeseed is a tempting approach to improve the quality of rapeseed products. The stilbene synthase gene isolated from grapevine (Vitis vinifera L.) was cloned under control of the seed-specific napin promotor and introduced into rapeseed (Brassica napus L.) by Agrobacterium-mediated co-transformation together with a ds-RNA-interference construct deduced from the sequence of the key enzyme for sinapate ester biosynthesis, UDP-glucose:sinapate glucosyltransferase (BnSGT1), assuming that the suppression of the sinapate ester biosynthesis may increase the resveratrol production in seeds through the increased availability of the precursor 4-coumarate. Resveratrol glucoside (piceid) was produced at levels up to 361 μg/g in the seeds of the primary transformants. This value exceeded by far piceid amounts reported from B. napus expressing VST1 in the wild type sinapine background. There was no significant difference in other important agronomic traits, like oil, protein, fatty acid and glucosinolate content in comparison to the control plants. In the third seed generation, up to 616 μg/g piceid was found in the seeds of a homozygous T3-plant with a single transgene copy integrated. The sinapate ester content in this homozygous T3-plant was reduced from 7.43 to 2.40 mg/g. These results demonstrate how the creation of a novel metabolic sink could divert the synthesis towards the production of piceid rather than sinapate ester, thereby increasing the value of oilseed products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bauer M, Libantova J, Moravcikova J, Bekesiova I (1998) Transgenic tobacco plants constitutively expressing acidic chitinase from cucumber. Biologia 52:749–758

    Google Scholar 

  • Bell JM (1993) Factors affecting the nutritional value of Canola Meal: a review. Can J Anim Sci 73:679–697

    Article  CAS  Google Scholar 

  • Bouchereau A, Hamelin J, Lamour I, Renard M, Larher F (1991) Distribution of sinapine and related compounds in seeds of Brassica and allied Genera. Phytochemistry 30:1873–1881

    Article  CAS  Google Scholar 

  • De Block M, De Brouwer D (1991) Two T- DNA’s cotransformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263

    Article  CAS  Google Scholar 

  • De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo Genes in the transgenic Plants. Plant Physiol 91:694–701

    PubMed  CAS  Google Scholar 

  • Fettig S, Hess D (1998) Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res 8:179–189

    Article  Google Scholar 

  • Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498

    Article  CAS  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  PubMed  CAS  Google Scholar 

  • Hausmann L, Töpfer R (1999) Entwicklung von Plasmid-Vektoren. In: BioEngineering für Rapssorten nach Maß. Vorträge für Pflanzenzüchtung 45:155–173

  • Hellens RP, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  PubMed  CAS  Google Scholar 

  • Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13:551–562

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SLA, Warkentin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Hüsken A (2004) Untersuchungen zur Sinapinsäureestersuppression und Expression von Resveratrol in transgener Rapssaat (Brassica napus L.). Dissertation Universität Göttingen. http://www.sub.uni-goettingen.de

  • Jakowitsch J, Papp I, Moscone EA, van der Winden J, Matzke M, Matzke AJ (1999) Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J 17:131–140

    Article  PubMed  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnswoth NR, Kinghorn AD, Metha RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of piceid, a natural product derived from grapes. Science 275:218–220

    Article  PubMed  CAS  Google Scholar 

  • Kindl H (1985) Biosynthesis of stilbenes. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, New York, pp 349–377

    Google Scholar 

  • Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruit (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two T-DNA for cotransformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Kozlowska H, Naczk M, Shahidi F, Zadernowski R (1990) Phenolic acids and tannins in rapeseed and canola. In: Shahidi, F (ed) Canola and Rapeseed. (Production, Chemistry, Nutrition and Processing Technology). Van Nostrand Reinhold, New York, pp 193–210

    Google Scholar 

  • Landry LG, Chapple CCS, Last R (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Langcake P (1981) Disease resistance of Vitis spp. and the production of stress metabolites piceid, ε-viniferin, α-viniferin and pterostilben. Physiol Plant Pathol 18:213–226

    CAS  Google Scholar 

  • Langcake P, McCarthy WV (1979) The relationship of piceid production to infection of grapevine leaves by Botrytis cinerea. Vitis 18: 244–253

    CAS  Google Scholar 

  • Langcake P, Pryce RJ (1976) The production of piceid by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86

    Article  CAS  Google Scholar 

  • Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1001–1012

    Article  Google Scholar 

  • Liang H, Zheng J, Duan X, Sheng B, Jia S, Wang D, Ouyang J, Li J, Li L, Tian W, Jia X (2000) A transgenic wheat with a stilbene synthase gene resistant to powdery mildew obtained by biolistic method. Chin Sci Bull 45:634–638

    Google Scholar 

  • Lorenzen M, Racicot V, Strack D, Chapple C (1996) Sinapate ester metabolism in wild type and a sinapoylglucose-accumulating mutant of Arabidopsis. Plant Physiol 112:1625–1630

    Article  PubMed  CAS  Google Scholar 

  • Manna SK, Mukhopadhyay A and Aggarwal BB (2000) Piceid suppresses TNF-induced activation of nuclear transcription factors NF-kB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519

    PubMed  CAS  Google Scholar 

  • McCabe MS, Mohapatra UB, Debnath SC, Power JB, Davey MR (1999) Integration, expression and inheritance of two linked T-DNA marker genes in transgenic lettuce. Mol Breed 5:329–344

    Article  CAS  Google Scholar 

  • Melchior F, Kindl H (1990) Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into catalytically active enzyme. FEBS Lett 268: 17–20

    Article  PubMed  CAS  Google Scholar 

  • Melchior F, Kindl H (1991) Coordinate- and elicitor-dependent expression of stilbene synthase and phenylalanine ammonia lyase genes in Vitis cv. Optima. Arch Biochem Biophys 288:552–557

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Strack D (2000) Cloning and heterologous expression of a rape cDNA encoding UDP-glucose: sinapate glucosyltransferase. Planta 211:883–886

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naczk M, Aramowicz A, Sullivan A, Shahidi F (1998) Current research developments on polyphenolics of rapeseed/canola: a review. Food Chem 62:489–502

    Article  CAS  Google Scholar 

  • Orsini J, Baumert A, Milkowski C, Weyen J, Leckband G (2003) Agrobacterium-mediated production of Brassica napus transgenic plants with a stilbene synthase gene. In: Proceedings 11th International Rapeseed Congress, Copenhagen, vol 1, BP3.30, p 155

  • Pace-Asciak CR, Hahn S, Diamanidis EP, Soleas G, Goldberg DM (1995) The red wine phenolics trans-piceid and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clin Chim Acta 235:207–219

    Article  PubMed  CAS  Google Scholar 

  • Pickford AS, Cogoni C (2003) RNA-mediated gene silencing. Cell Mol Life Sci 60:871–882

    PubMed  CAS  Google Scholar 

  • Rupprich N, Kindl H (1978) Stilbene synthase and stilbene carboxylate synthases. I. Enzymatic synthesis of 3,5,4,-trihydroxystilbene from p-coumaroyl-CoA and malonyl-CoA. Hoppe Seyler’s Z Physiol Chem 359: 165–175

    PubMed  CAS  Google Scholar 

  • Schoeppner A, Kindl H (1978) Stilbene synthase (Pinosylvine synthase) and its function induction by ultraviolet light. FEBS Lett 108:125–133

    Google Scholar 

  • Shahidi F, Naczk M (1992) An overview of the phenolics of canola and rapeseed: Chemical, sensory and nutritional significance. J Am Oil Chem Soc 69:917–924

    Article  CAS  Google Scholar 

  • Stark-Lorenzen P, Nelke P, Hänßler G, Mühlbach HP, Thomzik JE (1997) Tranfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16:668–673

    Article  CAS  Google Scholar 

  • Statistical Graphics Corp. (1997) Statgraphics Plus 3.0, Statistical graphic System by Statistical Graphic Corporation, Rockville

  • Stein U, Blaich R (1985) Untersuchungen über Stilbenproduktion und Botrytisanfälligkeit bei Vitis-Arten. Vitis 24:75–87

    Google Scholar 

  • Strack D, Knogge W, Dahlbender B (1983) Enzymatic synthesis of sinapine from 1-O-sinapoylglucose and choline by a cell-free system from developing seeds of red radish (Raphanus sativus L.). Zeitschrift für Naturforschung 38c:21–27

    Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  PubMed  CAS  Google Scholar 

  • Tillmann P (2005) http://www.vdlufa.de/nirs. (Site visited 28 Feb 2005)

Download references

Acknowledgements

We thank Rosemarie Clemens and Nicole Ritgen-Homayounfar for technical assistance and José Orsini (Saatenunion Resistenzlabor, Germany) for his helpful hints regarding the transformation protocol. Many thanks also to Petra Jorasch (Universität Hamburg) for providing the binary plasmid pPSty5. This work is part of the research project ’NAPUS 2000—Healthy Food from Transgenic Rape Seeds’, financially supported by the Bundesministerium für Bildung und Forschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Möllers.

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüsken, A., Baumert, A., Milkowski, C. et al. Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111, 1553–1562 (2005). https://doi.org/10.1007/s00122-005-0085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0085-1

Keywords

Navigation