Skip to main content
Log in

Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The Chinese genebank contains 23,587 soybean landraces collected from 29 provinces. In this study, a representative collection of 1,863 landraces were assessed for genetic diversity and genetic differentiation in order to provide useful information for effective management and utilization. A total of 1,160 SSR alleles at 59 SSR loci were detected including 97 unique and 485 low-frequency alleles, which indicated great richness and uniqueness of genetic variation in this core collection. Seven clusters were inferred by STRUCTURE analysis, which is in good agreement with a neighbor-joining tree. The cluster subdivision was also supported by highly significant pairwise F st values and was generally in accordance with differences in planting area and sowing season. The cluster HSuM, which contains accessions collected from the region between 32.0 and 40.5°N, 105.4 and 122.2°E along the central and downstream parts of the Yellow River, was the most genetically diverse of the seven clusters. This provides the first molecular evidence for the hypotheses that the origin of cultivated soybean is the Yellow River region. A high proportion (95.1%) of pairs of alleles from different loci was in LD in the complete dataset. This was mostly due to overall population structure, since the number of locus pairs in LD was reduced sharply within each of the clusters compared to the complete dataset. This shows that population structure needs to be accounted for in association studies conducted within this collection. The low value of LD within the clusters can be seen as evidence that much of the recombination events in the past have been maintained in soybean, fixed in homozygous self-fertilizing landraces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe J, Xu DH, Suzuki Y, Kanazawa A, Shimamoto Y (2003) Soybean germplasm pools in Asia revealed by nuclear SSRs. Theor Appl Genet 106:445–453

    PubMed  CAS  Google Scholar 

  • Anand SC, Gallo KM (1984) Identification of additional soybean germplasm with resistance to race3 of the soybean cyst nematode. Plant Disease Report 68:593–595

    Article  Google Scholar 

  • Anand SC, Gallo KM, Baker IA, Hartwig EE (1988) Soybean plant introductions with resistance to races 4 or 5 of soybean cyst nematode. Crop Sci 28:563–564

    Google Scholar 

  • Anand SC, Shannon JG, Wrather JA, Arelli PR, Sleper DA, Young LD (2004) Registration of S97–1688 soybean germplasm line high in protein content and resistant to soybean cyst nematode. Crop Sci 44:698–699

    Google Scholar 

  • Brown-Guedira GL, Thompson JA, Nelson RL, Warburton ML (2000) Evaluation of genetic diversity of soybean introductions and north American ancestors using RAPD and SSR markers. Crop Sci 40:815–823

    CAS  Google Scholar 

  • Bu MH, Pan TF (1987) Soybean Improvement and Cultivation in China. Agricultural Press, Beijing, pp 58–105

    Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant moleculardiversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  PubMed  CAS  Google Scholar 

  • Chang RZ (1989) Studies on the origin of the cultivated soybean (Glycine max (L) merr). Oil Crop Sci 1:1–6

    Google Scholar 

  • Chang RZ, Sun JY (1991) Catalogues of Chinese Soybean Germplasm and Resources: Continuation I. China Agricultural Press, Beijing

    Google Scholar 

  • Chang RZ, Sun JY, Qiu LJ, Chen YW (1996) Catalogues of Chinese Soybean Germplasm and Resources: Continuation II. China Agricultural Press, Beijing

    Google Scholar 

  • Chang RZ, Sun JY, Qiu LJ (1998) The development of soybean germplasm in China. Crops 3:7–9

    Google Scholar 

  • Chamberlain DW, Bernard RL (1968) Resistance to brown stem rot in soybeans. Crop Sci 8:728–729

    Google Scholar 

  • Chen Y, Nelson RL (2005) Relationship between origin and genetic diversity in Chinese soybean germplasm. Crop Sci 45:1645–1652

    Article  CAS  Google Scholar 

  • Coordinative group of evaluation of SCN (1993) Evaluation of soybean germplasm for resistance to race 1, 3 and 4 of the soybean cyst nematode. Soybean Sci 12(2):91–99

    Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, Van Toai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    CAS  Google Scholar 

  • Cui YH, Qiu LJ, Chang RZ, Lu WH (2003) Examination of representiveness of the primary core collection in Huanghuai summer sowing soybean (Glycine max) using SSR. J Plant Genetic Resour 4(1):9–15

    Google Scholar 

  • Cui YH, Qiu LJ, Chang RZ, Lu WH (2004a) A study of genetic diversity of Huanghuai summer sowing soybean in China. Sci Agricult Sin 37:15–22

    Google Scholar 

  • Cui YH, Qiu LJ, Chang RZ, Lu WH (2004b) Representative test for primary core collection of summer sowing soybeans in Huanghuai region of China. Acta Agron Sin 30:284–288

    Google Scholar 

  • Cui ZL, Carter TE, Burton JW (2000) Genetic diversity patterns in Chinese soybean cultivars based on coefficient of parentage. Crop Sci 40:1780–1793

    Google Scholar 

  • Diwan N, Cregan PB (1997) Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95:723–733

    Article  CAS  Google Scholar 

  • Dong YS, Zhao LM, Liu B, Wang ZW, Jin ZQ, Sun H (2004) The genetic diversity of cultivated soybean grown in China. Theor Appl Genet 108:931–936

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Fukuda Y (1933) Cytogenetical studies on the wild and cultivated Manchurian soybeans (Glycine L). Jap J Bot 6:489–506

    Google Scholar 

  • Gai JY, Wang YS (2001) A study on the varietal eco-regions of soybeans in China. Sci Agricult Sin 34:139–145

    Google Scholar 

  • Goudet J (2002) FSTAT: A program to estimate and test gene diversities and fixation indices V2932 Available online at http://www.unilch/popgen/softwares/fstathtm Department of Ecology & Evolution, Biology Building, UNIL, CH-1015 LAUSANNE, Switzerland

  • Guan Y, WD E, Wang LX, Guan RX, Liu ZX, Chang RZ, Qu YY, Qiu LJ (2006) Analysis of factors influencing the genetic diversity evaluation using two soybean [Glycine max (L.) Merr.] collections from Hunan and Hubei. Acta Agron Sin 33:461–468

    Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR (1975) Geographic patterns of variation in some cultivated plants. J Hered 66:84–101

    Google Scholar 

  • Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341

    PubMed  CAS  Google Scholar 

  • Hymowitz T, Newell CA (1981) Taxonomy of genus Glycine, domestication and uses of soybeans. Econ Bot 35:272–288

    Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Jain R, Mccouch S (2004) Genetic analysis of Indian aromatic and qualityrice (Oryza sativa L.) germplasm using panels of fluorescently-labled microsatellite markers. Theor Appl Genet 109:965–977

    Article  PubMed  CAS  Google Scholar 

  • Kisha TJ, Diers BW, Hoyt JM, Sneller CH (1998) Genetic diversity among soybean plant introductions and North American germplasm. Crop Sci 38:1669–1680

    Google Scholar 

  • Koopman WJM, Li YH, Coart E, Van De Weg WE, Vosman B, Roldán-Ruiz IR, Smulders MJM (2007) Linked vs. unlinked markers: multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression. Molec Ecol 16:243–256

    Article  CAS  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Li LH, Qiu LJ, Chang RZ, He XL (2005) Differentiation and genetic diversity of SSR molecular markers for Huanghuai and southern summer sowing soybean in China. Acta Agron Sin 31:777–783

    CAS  Google Scholar 

  • Li ZL, Nelson RL (2001) Genetic diversity among soybean accessions from three countries measured by RAPDs. Crop Sci 41:1337–1347

    CAS  Google Scholar 

  • Lin FY, Qiu LJ, Chang RZ, He BR (2003) Genetic diversity of landrace and bred varieties of soybean in Shanxi. Chin J Oil Crop Sci 25(3):24–28

    Google Scholar 

  • Liu KJ, Goodman M, Muse S, Smith JS, Buckler ED, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    PubMed  CAS  Google Scholar 

  • Lu SL, Cheng SH, Cheng CJ (1981) A study on the classification of soybean cultivation regions in China. J Shanxi Agric Univ 1(1):9–17

    Google Scholar 

  • Luan WJ, Liu ZX, Guan RX, Chang RZ, He BR, Qiu LJ (2005) Representativeness of Northeast China spring soybeans and their genetic diversity at SSR loci. Appl Ecol 16:1469–1476

    CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breeding 15:271–289

    Article  CAS  Google Scholar 

  • Maughan PJ, Saghai Maroof MA, Buss GR (1995) Microsatellite and amplified sequence length polymorphism in cultivated and wild soybean. Genome 38:715–723

    Article  PubMed  CAS  Google Scholar 

  • McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L) germplasm. Euphytica 113:135–144

    Article  CAS  Google Scholar 

  • Mi SJ, Qiu LJ, Chang RZ, Hao ZB, Guan RX (2004) Genetic diversity analysis of varieties of Glycine max (L.) Merr resistant to Soybean mosaic virus by SSR fingerprints. Acta Phyto Pathol Sin 34:244–253

    Google Scholar 

  • Morse WJ (1950) History of soybean production. In: Markley KS (ed) Soybean and soybean products. Interscience Publishers, Inc, New York, pp 3–59

    Google Scholar 

  • Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–835

    Article  Google Scholar 

  • Narvel JM, Fehr WR, Chu W, Grant D, Shoemaker RC (2000) Simple sequence repeat diversity among soybean plant introductions and elite genotypes. Crop Sci 40:1452–1458

    CAS  Google Scholar 

  • Pan TF, Zhang DR, Zhang WG (1994) A study on the climatic regions of soybeans in China. Soybean Sci 3:169–182

    Google Scholar 

  • Pantalone VR, Allen FL, Landau-Ellis D (2003) Registration of ‘5601T’ soybean. Crop Sci. 43:1123–1124

    Google Scholar 

  • Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Pearse DE, Crandall KA (2004) Beyond FST: analysis of population genetic data for conservation. Conserv Genet 5:585–602

    Article  CAS  Google Scholar 

  • Piao RH, Liu ZX, Guan RX, Chang RZ, Hao ZB, Qiu LJ (2005) Genetic diversity of southern summer soybean in Chinese Coastal Revealed by SSR markers. Agricult Biotechnol 13:435–440

    CAS  Google Scholar 

  • Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Wen W (2004) Documentation for structure software: Version 2. http://pritchbsduchicagoedu/software/readme_structure2_1pdf

  • Qiu LJ, Cao YS, Chang RZ, Zhou XA, Wang GX, Sun JY, Xie H, Zhang B, Li XH, Xu ZY, Liu LH (2003) Establishment of Chinese soybean (G. max) core collection: Sampling strategy. Sci Agricult Sin 36:1442–1449

    Google Scholar 

  • Remington DL, Jeffry MT, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:1147–11484

    Article  Google Scholar 

  • Roussel V, Koenig J, Bechert M, Balfouriter F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg NA, Prichard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385

    Article  PubMed  CAS  Google Scholar 

  • Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Apple Genet 111:723–730

    Article  Google Scholar 

  • Ude GN, Kenworthy WJ, Costa JM, Cregan PB, Alvernaz J (2003) Genetic diversity of soybean cultivars from China, Japan, North America, and North American Ancestral Lines determined by amplified fragment length polymorphism. Crop Sci 43:1858–1867

    CAS  Google Scholar 

  • Van de Peer Y, De Wachter Y (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–70

    PubMed  Google Scholar 

  • Van Duyn JW, Turnipseed SG, Maxwell JD (1971) Resistance in soybeans to the Mexican Bean Beetle I: source of resistance. Crop Sci 11:572–573

    Google Scholar 

  • Vavilov NI (1951) The origin variation immunity and breeding of cultivated plants (translation by K Star Chester). Chron Bot Ronald Press, NewYork

    Google Scholar 

  • Wang B, Chang RZ, Yan L, Tao L, Guan RX, Yan L, Feng ZF, Qiu LJ (2003) Identification of SSR primer numbers for analyzing genetic diversity of Chinese cultivated soybean. Molec Plant Breeding 1:82–88

    CAS  Google Scholar 

  • Wang GX (1982) Catalogues of Chinese Soybean germplasm and resources. China Agricultural Press, Beijing

    Google Scholar 

  • Wang LX, Li YH, Li W, Zhu L, Guan Y, Ning XC, Guan YX, Liu ZX, Chang RZ, Qiu LJ (2004) Establishment of a core collection of Changjiang spring sowing soybean. Biodiv Sci 12:578–585

    Google Scholar 

  • Wang LX, Guan RX, Liu ZX, Chang RZ, Qiu LJ (2006) Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci 46:1032–1038

    Article  Google Scholar 

  • Wang JL (1991) Soybean ecotypes. Agricultural Press, Beijing

    Google Scholar 

  • Wang Y, Hobbs HA, Hill CB, Domier LL, Hartman GL, Nelson RL (2005) Evaluation of ancestral lines of U.S. soybean cultivars for resistance to four soybean viruses. Crop Sci 45:639–644

    Google Scholar 

  • Wang YS, Gai JY (2002) Study on the ecological regions of soybean in China: Ecological environment and representative varieties. Chin J Appl Ecol 13:71–75

    Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinaur, Sunderland

    Google Scholar 

  • Xie H, Chang RZ, Cao RS, Zhang MH, Fen ZF, Qiu LJ (2003) Selection of core SSR loci by using Chinese autumn soybean. Sci Agricult Sin 36:360–366

    CAS  Google Scholar 

  • Xie H, Guan RX, Chang RZ, Qiu LJ (2005) Genetic diversity of Chinese summer soybean germplasm revealed by SSR markers. Chin Sci Bull 50:526–535

    CAS  Google Scholar 

  • Xu B, Lu B (1983) Soybean ecology study: day length and temperature study of wild soybean in different latitude. Soybean Sci 2(3):8–9

    Google Scholar 

  • Xu DH, Abe J, Gai JY, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653

    Article  PubMed  CAS  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J Bot 129:157

    Google Scholar 

  • Zhang HY, Guan RX, Li YH, Wang LX, Luan WJ, Chang RZ, Liu ZX, Qiu LJ (2005) Genetic diversity analysis and marker assisted identification of salt tolerant soybean by using SSR marker. Plant Genetic Resour 6(3):251–255

    Google Scholar 

  • Zhao TJ, Gai JY (2004) The Origin and evolution of cultivated soybean [Glycine max (L) Merr]. Sci Agricult Sin 37:954–962

    Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the State Key Basic Research and Development Plan of China (973) (No.2004CB117203), National Key Technologies R&D Program in the 11th Five-Year Plan (No.2006BAD13B05), the National Natural Science Foundation of China (No.30490251 and 30471096) and the Academy and Institute Foundation for Basic Scientific Research in Institute of Crop Science, Chinese Academy of Agricultural Sciences. Dr. Wim J.M. Koopman (Plant Research International, Wageningen UR, The Netherlands) is thanked for a batch program for NTSYS, and Dr. Alain Charcosset and two anonymous reviewers for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Qiu.

Additional information

Communicated by A. Charcosset.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2008_825_MOESM1_ESM.doc

Table S1. Description of the 59 SSR loci, population-genetic statistics for the complete dataset, and most frequent alleles in each of the seven model-based clusters (DOC 253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Guan, R., Liu, Z. et al. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor Appl Genet 117, 857–871 (2008). https://doi.org/10.1007/s00122-008-0825-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0825-0

Keywords

Navigation