Skip to main content
Log in

Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The inter-retrotransposon amplified polymorphism (IRAP) protocol was applied for the first time within the genus Helianthus to assess intraspecific variability based on retrotransposon sequences among 36 wild accessions and 26 cultivars of Helianthus annuus L., and interspecific variability among 39 species of Helianthus. Two groups of LTRs, one belonging to a Copia-like retroelement and the other to a putative retrotransposon of unknown nature (SURE) have been isolated, sequenced and primers were designed to obtain IRAP fingerprints. The number of polymorphic bands in H. annuus wild accessions is as high as in Helianthus species. If we assume that a polymorphic band can be related to a retrotransposon insertion, this result suggests that retrotransposon activity continued after Helianthus speciation. Calculation of similarity indices from binary matrices (Shannon’s and Jaccard’s indices) show that variability is reduced among domesticated H. annuus. On the contrary, similarity indices among Helianthus species were as large as those observed among wild H. annuus accessions, probably related to their scattered geographic distribution. Principal component analysis of IRAP fingerprints allows the distinction between perennial and annual Helianthus species especially when the SURE element is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ammiraju JS, Zuccolo A, Yu Y, Song X, Piegu B, Chevalier F, Walling JG, Ma J, Talag J, Brar DS, SanMiguel PJ, Jiang N, Jackson SA, Panaud O, Wing RA (2007) Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J 52:342–351

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Ann Rev Microbiol 43:403–434

    Article  CAS  Google Scholar 

  • Cavallini A, Zolfino C, Natali L, Cionini G, Cionini PG (1986) Nuclear DNA changes within Helianthus annuus L.: origin and control mechanism. Theor Appl Genet 73:20–26

    Article  CAS  Google Scholar 

  • Cheres MT, Knapp SJ (1998) Ancestral origins and genetic diversity of cultivated sunflower: analysis of the pedigrees of public germplasm. Crop Sci 38:1476–1482

    Article  Google Scholar 

  • Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: Copia and LINE-like elements in Gossypium. Genome 51:11–18

    Article  PubMed  CAS  Google Scholar 

  • Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theor Appl Genet 86:927–934

    Article  CAS  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jing R, Johnson R, Seres A, Kiss G, Ambrose MJ, Knox MR, Ellis THN, Flavell AJ (2007) Gene-based sequence diversity analysis of field pea (Pisum). Genetics 177:2263–2275

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon based genotyping and fingerprinting. Nature Protocols 1:2478–2484

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166:1437–1450

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105:5833–5838

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin colour. Science 304:982

    Article  PubMed  Google Scholar 

  • Kumar A, Bennetzen J (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Lentz DL, Pohl MD, Alvarado JL, Tarighat S, Bye R (2008) Sunflower (Helianthus annuus L.) as a pre-Columbian domesticate in Mexico. Proc Natl Acad Sci USA 105:6232–6237

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  • Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM (2009) Evolution of genome size and complexity in Pinus. PLoS ONE 4:e4332

    Article  PubMed  CAS  Google Scholar 

  • Natali L, Giordani T, Cavallini A (2003) Sequence variability of a dehydrin gene within Helianthus annuus. Theor Appl Genet 106:811–818

    PubMed  CAS  Google Scholar 

  • Natali L, Santini S, Giordani T, Minelli S, Maestrini P, Cionini PG, Cavallini A (2006) Distribution of Ty3-gypsy- and Ty1-copia-like DNA sequences in the genus Helianthus and other Asteraceae. Genome 49:64–72

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NY

    Google Scholar 

  • Neumann P, Koblízková A, Navrátilová A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Orloci L (1978) Multivariate analysis in phytosociology: partition, classification and prediction. J Theor Biol 20:271–284

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENEALEX 6: genetic analysis in Excel, Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Rieseberg LH, Van Fossen C, Desrochers A (1995) Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375:313–316

    Article  CAS  Google Scholar 

  • Rogers CE, Thompson TE, Seiler GJ (1982) Sunflower species of the United States. National Sunflower Association, Bismarck, North Dakota

    Google Scholar 

  • Rohlf FJ (2000) NTSys-pc: numerical taxonomy and multivariate analysis system Version 2.1. Exeter Software, New York

    Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  PubMed  CAS  Google Scholar 

  • Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97:381–388

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Santini S, Cavallini A, Natali L, Minelli S, Maggini F, Cionini PG (2002) Ty1/Copia- and Ty3/Gypsy-like DNA sequences in Helianthus species. Chromosoma 111:192–200

    Article  PubMed  CAS  Google Scholar 

  • Schilling EE (1997) Phylogenetic analysis of Helianthus (Asteraceae) based on chloroplast DNA restriction site data. Theor Appl Genet 94:925–933

    Article  CAS  Google Scholar 

  • Schilling EE, Linder CR, Noyes RD, Rieseberg LH (1998) Phylogenetic relationships in Helianthus (Asteraceae) based on nuclear ribosomal DNA internal transcribed spacer region sequence data. Syst Bot 23:177–187

    Article  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 260:145–173

    PubMed  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, IL

    Google Scholar 

  • Sossey-Alaoui K, Serieys H, Tersac M, Lambert P, Schilling EE, Griveau Y, Kaan F, Bervillé A (1998) Evidence for several genomes in Helianthus. Theor Appl Genet 97:422–430

    Article  CAS  Google Scholar 

  • Suoniemi A, Anamthawat-Jónsson K, Arna T, Schulman AH (1996) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol 30:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Suoniemi A, Schmidt D, Schulman AH (1997) BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica 100:219–230

    Article  PubMed  CAS  Google Scholar 

  • Tanskanen JA, Sabot F, Vicient C, Schulman AH (2007) Life without GAG: The BARE-2 retrotransposon as a parasite’s parasite. Gene 390:166–174

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Desmond G, Gibson H, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas WTB, Powell W (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

  • Whelan EDP (1978) Cytology and interspecific hybridization. In: Carter JF (ed) Sunflower Science and Technology, Am. Soc. Agronomy, Madison, Wis, pp 339–370

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell AJ, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nature Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13778–13783

    Article  PubMed  CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ (1999) POPGENE version 1.32, Microsoft Window-based free ware for population genetic analysis. Computer program and documentation distributed by University of Alberta and Centre for International Forestry Research, Alberta, Canada. http://www.ualberta.ca/;fyeh/index.htm

Download references

Acknowledgments

Research work supported by PRIN-MIUR, Italy, Project “Variabilità di sequenza ed eterosi in piante coltivate”. M. V. was supported by a 6 months mobility scholarship issued by the Finnish Centre of International Mobility (CIMO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cavallini.

Additional information

Communicated by A. Bervillé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 147 kb)

(TIFF 69 kb)

(DOC 25 kb)

(DOC 2611 kb)

(DOC 319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vukich, M., Schulman, A.H., Giordani, T. et al. Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor Appl Genet 119, 1027–1038 (2009). https://doi.org/10.1007/s00122-009-1106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1106-2

Keywords

Navigation