Skip to main content
Log in

An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Construction and improvement of a genetic map for peanut (Arachis hypogaea L.) continues to be an important task in order to facilitate quantitative trait locus (QTL) analysis and the development of tools for marker-assisted breeding. The objective of this study was to develop a comparative integrated map from two cultivated × cultivated recombinant inbred line (RIL) mapping populations and to apply in mapping Tomato spotted wilt virus (TSWV) resistance trait in peanut. A total of 4,576 simple sequence repeat (SSR) markers from three sources: published SSR markers, newly developed SSR markers from expressed sequence tags (EST) and from bacterial artificial chromosome end-sequences were used for screening polymorphisms. Two cleaved amplified polymorphic sequence markers were also included to differentiate ahFAD2A alleles and ahFAD2B alleles. A total of 324 markers were anchored on this integrated map covering 1,352.1 cM with 21 linkage groups (LGs). Combining information from duplicated loci between LGs and comparing with published diploid maps, seven homoeologous groups were defined and 17 LGs (A1–A10, B1–B4, B7, B8, and B9) were aligned to corresponding A-subgenome or B-subgenome of diploid progenitors. One reciprocal translocation was confirmed in the tetraploid-cultivated peanut genome. Several chromosomal rearrangements were observed by comparing with published cultivated peanut maps. High consistence with cultivated peanut maps derived from different populations may support this integrated map as a reliable reference map for peanut whole genome sequencing assembling. Further two major QTLs for TSWV resistance were identified for each RILs, which illustrated the application of this map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Burow MD, Simpson CE, Paterson AH, Starr JL (1996) Identification of peanut (Arachis hypogaea L.) RAPD makers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed 2:369–379

    Article  CAS  Google Scholar 

  • Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploids to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837

    PubMed  CAS  Google Scholar 

  • Chu Y, Holbrook CC, Timper P, Ozias-Akins P (2007a) Development of a PCR-based molecular marker to select for nematode resistance in peanut. Crop Sci 57:841–847

    Article  Google Scholar 

  • Chu Y, Ramos L, Holbrook CC, Ozias-Akins P (2007b) Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the U.S. peanut germplasm collection. Crop Sci 47:2372–2378

    Article  CAS  Google Scholar 

  • Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci 49:2029–2036

    Article  CAS  Google Scholar 

  • Culbreath AK, Gorbet DW, Martinez-Ochoa N, Holbrook CC, Todd JW, Isleib TG, Tillman B (2005) High levels of field resistance to tomato spotted wilt virus in peanut breeding lines derived from hypogaea and hirsuta botanical varieties. Peanut Sci 32:20–24

    Article  Google Scholar 

  • Desai A, Chee PW, Rong JK, May OL, Paterson AH (2006) Chromosome structural changes in diploid and tetraploid A genomes of Gossypium. Genome 49:336–345

    Article  PubMed  Google Scholar 

  • Favero AP, Simpson CE, Valls JF, Vello NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaensis, A. duranensis, and A. hypogaea. Crop Sci 46(4):1546–1552

    Article  Google Scholar 

  • Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 108:1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9:103

    Article  PubMed  Google Scholar 

  • Fountain J, Qin HD, Chen C, Dang P, Wang ML, Guo BZ (2011) A note on development of a low-cost and high-throughput SSR-based genotyping method in peanut (Arachis hypogaea L.). Peanut Sci (in press)

  • Gorbet DW, Knauft DA (2000) Registration of ‘SunOleic 97R’ peanut. Crop Sci 40:1190–1191

    Google Scholar 

  • Guo BZ, Chen X, Dang P, Scully BT, Liang X, Holbrook CC, Yu J, Culbreath AK (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol 8:1–16

    Article  Google Scholar 

  • Guo BZ, Chen XP, Hong YB, Liang XQ, Dang P, Brenneman T, Holbrook CC, Culbreath A (2009) Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Intl J Plant Genomics 2009:1–14

    Article  Google Scholar 

  • Guo BZ, Chen CY, Chu Y, Holbrook CC, Ozias-Akins P, Stalker HT (2011) Advances in genetics and genomics for sustainable peanut production. In: Benkeblia N (ed) Sustainable agriculture and new biotechnologies. CRC Press, Boca Raton, pp 341–368

    Chapter  Google Scholar 

  • Halward TM, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384

    Article  CAS  Google Scholar 

  • He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS (2003) Microsatellites as DNA markers in cultivated peanut (A. hypogaea L.). BMC Plant Biol 3:1–3

    Article  Google Scholar 

  • Holbrook CC, Culbreath AK (2007) Registration of ‘Tifrunner’ peanut. J Plant Regist 1:124

    Article  Google Scholar 

  • Hong YB, Chen XP, Liang XQ, Liu HY, Zhou GY, Li SX, Wen SJ, Holbrook CC, Guo BZ (2010) A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 10:17

    Article  PubMed  Google Scholar 

  • Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    Article  CAS  Google Scholar 

  • Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A (2000) The high oleate trait in the cultivated peanut (Arachis hypogaea L.). I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet 263:796–805

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Kruglyak L (1995) Genetic dissection of complex traits guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Leal-Bertioli SC, Jose AC, Alves-Freitas DM et al (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9:112

    Article  PubMed  Google Scholar 

  • Li Y, Chen CY, Knapp SJ, Culbreath AK, Holbrook C, Guo BZ (2011a) Characterization of simple sequence repeats (SSRs) markers and genetic relationships within cultivated peanuts (Arachis hypogaea L.). Peanut Sci 38(1):1–10

    Google Scholar 

  • Li Y, Culbreath AK, Chen CY, Knapp SJ, Holbrook CC, Guo BZ (2011b) Variability in field response of peanut genotypes from the U.S. and China to tomato spotted wilt virus and leaf spots. Peanuit Sci (accepted)

  • Liang X, Holbrook CC, Lynch RE, Guo BZ (2005) Beta-1,3-glucanase activity in peanut seed (Arachis hypogaea) is induced by inoculation with Aspergillus flavus and copurifies with a conglutin-like protein. Phytopathology 95:506–511

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo BZ (2009) Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol 9:35

    Article  PubMed  Google Scholar 

  • Milla SR, Isleib TG, Stalker HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–11

    Article  PubMed  CAS  Google Scholar 

  • Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JF, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11

    Article  Google Scholar 

  • Moretzsohn MC, Leoi L, Proite K, Guimaras PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071

    Article  PubMed  CAS  Google Scholar 

  • Moretzsohn MC, Barbosa AV, Alves-Freitas DM, Teixeira C, Leal-Bertioli SC, Guimaraes PM, Pereira RW, Lopes CR, Cavallari MM, Valls JF, Bertioli DJ, Gimenes MA (2009) A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40

    Article  PubMed  Google Scholar 

  • Nagy ED, Chu Y, Guo YF, Khanal S, Tang SX, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P, Holbrook CC, Beilinson V, Nielsen NC, Stalker HT, Knapp SJ (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed 26:357–370

    Article  CAS  Google Scholar 

  • Palmieri DA, Hoshino AA, Bravo JP, Lopes CR, Gimenes MA (2002) Isolation and characterization of microsatellite loci from the forage species Arachis Pintoi (Genus Arachis). Mol Ecol Notes 2:551–553

    Article  CAS  Google Scholar 

  • Palmieri DA, Bechara MD, Curi RA, Gimenes MA, Lopes CR (2005) Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes 5:77–79

    Article  CAS  Google Scholar 

  • Proite K, Leal-Bertioli SCM, Bertioli DJ, Moretzsohn MC, Silva FR, Martins NF, Guimarães PM (2007) ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7:7

    Article  PubMed  Google Scholar 

  • Qin HD, Zhang YM, Guo WZ, Zhang TZ (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117:883–894

    Article  PubMed  Google Scholar 

  • Rong JK, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding XL, Garza JJ, Marler BS, Park CH, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao XP, Zhu LH, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  PubMed  CAS  Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Moscone EA (2004) Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaënsis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91(9):1294–1303

    Article  PubMed  CAS  Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94(12):1963–1971

    Article  PubMed  Google Scholar 

  • Tillman BL, Gorbet DW, Culbreath A K, Todd JW (2006) Response of peanut cultivars to seeding density and row patterns. Crop Manag (online). doi:10.1094/CM-2006-0711-01-RS

  • Van Oojen JW, Voorips RE (2001) JoinMap® Version 3.0 Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Billy Wilson, Jake Fountain, Stephanie Lee, Lucero Gutierrez and Sara Beth Pelham for technical assistance in the field and the laboratory, and Dr. Douglas Cook of UC-Davis for providing BAC end-sequence SSRs. Dr. Tingbo Jiang’s assistance and advice in the early stage of the genotyping and Dr. Ye Chu’s help with the FAD genes was much appreciated. This research was partially supported by funds provided by the USDA Agricultural Research Service, the Georgia Agricultural Commodity Commission for Peanuts, Peanut Foundation and National Peanut Board. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozhu Guo.

Additional information

Communicated by G. Bryan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, H., Feng, S., Chen, C. et al. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124, 653–664 (2012). https://doi.org/10.1007/s00122-011-1737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1737-y

Keywords

Navigation