Skip to main content
Log in

Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat.

Abstract

Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ågrena J, Oakley CG, McKay JK, Lovell JT, Schemske DW (2013) Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc Natl Acad Sci USA 110:21077–21082

    Article  PubMed  Google Scholar 

  • Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martínez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139:1304–1312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Tai TH (2006) Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet 113:467–475

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Chen DZ, Zhong PA, Xiao YQ, Huang YJ, Xie JK (2002) Identification of QTLs for cold tolerance at seedling stage in Dongxiang wild rice (Oryza rufiongon Griff.) by SSR markers. Acta Agric Univ Jiangxi 24:753–756 (Chinese)

    CAS  Google Scholar 

  • Chen DZ, Xiao YQ, Pi YH, Wu WC, Hu LX, Luo XY, Wu XY (2007) The breeding of overwintering Japonica variety, Dong ye 1. Crop Research 3:254 (Chinese)

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geng XS, Yang MZ, Huang XQ, Cheng ZQ, Fu J, Sun T, Li J (2008) Cloning and analyzing of rice blast resistance gene Pi-ta+allele from Jinghong erect type of common wild rice (Oryza rufipogon Griff.) in Yunnan. Yi Chuan 30:109–114 (Chinese)

    Article  CAS  PubMed  Google Scholar 

  • Han L, Qiao Y, Zhang S, Zhang Y, Cao G, Kim J, Lee K, Koh H (2007) Identification of quantitative trait loci for cold response of seedling vigor traits in rice. J. Genet Genomics 343:239–246

    Article  Google Scholar 

  • Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He GC, Shu LH, Zhou YQ, Liao LJ (1996) The overwintering ability of Dongxiang wild rice (Oryza rufipogon) at Wuhan. J Wuhan Univ 42:252–254 (Chinese)

    Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B (2011) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Liu L (2006) New evidence for origins of sedentism and rice domestication in the Lower Yangzi River, China. Antiquity 80:355–361

    Article  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang ZX, Minobe Y (2010) Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Genet Genomics 284:45–54

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y (2010) Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep 29:977–986

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Sun C, Tan L, Fu Y, Li D, Wang X (2003) Identification and mapping of quantitative trait loci controlling cold-tolerance of Chinese common wild rice (O. rufipogon Griff.) at booting to flowering stages. Chin Sci Bull 48:2068–2071

    Article  Google Scholar 

  • Liu F, Xu W, Song Q, Tan L, Liu J, Zhu Z, Fu Y, Su Z, Sun C (2013) Microarray assisted fine-mapping of quantitative trait loci for cold tolerance in rice. Mol Plant 6:757–767

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One 9:e98855

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu HY, Liu ZX, Wu NQ, Berné S, Saito Y, Liu BZ, Wang L (2002) Rice domestication and climatic change: phytolith evidence from East China. Boreas 31:378–385

    Article  Google Scholar 

  • Mao DH, Chen CY (2012) Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS One 7:e47275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mao DH, Yu HH, Liu TM, Yang GY, Xing YZ (2011) Two complementary recessive genes in duplicated segments control etiolation in rice. Theor Appl Genet 122:373–383

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Normile D (1997) Archaeology: Yangtze seen as earliest rice site. Science 275:309–310

    Article  CAS  Google Scholar 

  • Oakley CG, Ågren J, Atchison RA, Schemske DW (2014) QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol Ecol 23:4304–4315

    Article  PubMed  Google Scholar 

  • Oka HI (1958) Intervarietal variation and classification of cultivated rice. Indian J Genet Plant Breed 18:79–89

    Google Scholar 

  • Qi Z, Huang L, Zhu R, Xin D, Liu C, Han X, Jiang H, Hong W, Hu G, Zheng H, Chen Q (2014) A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS One 9:e104871

    Article  PubMed Central  PubMed  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8:e58700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4, molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thalapati S, Batchu AK, Neelamraju S, Ramanan R (2012) Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice. Funct Integr Genomics 12:277–289

    Article  CAS  PubMed  Google Scholar 

  • van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0, software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen

  • Wang S, Basten C, Zeng Z (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Xia RX, Xiao N, Hong YH, Zhang C, Su Y, Zhang XM, Chen JM (2010) QTLs mapping for cold tolerance at seedling stage in Dongxiang wild rice (Oryza rufipogon Griff.). Scientia Agriculture Sinica 43:443–451 (Chinese)

    CAS  Google Scholar 

  • Xiao N, Huang WN, Zhang XX, Gao Y, Li AH, Dai Y, Yu L, Liu GQ, Pan CH, Li YH, Dai ZY, Chen JM (2014) Fine mapping of qRC10-2, a quantitative trait locus for cold tolerance of rice roots at seedling and mature stages. PLoS One 9:e96046

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang C, Zhang T, Wang H, Zhao N, Liu B (2012) Heritable alteration in salt-tolerance in rice induced by introgression from wild rice. Rice (N Y) 5:36

    Google Scholar 

  • Zhang ZH, Su L, Li W, Chen W, Zhu YG (2005) A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (Oryza sativa L.). Plant Sci 168:527–534

    Article  CAS  Google Scholar 

  • Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C (2006) Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol 62:247–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X (2013) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao Z (1998) The Middle Yangtze region in China is one place where rice was domesticated: phytolith evidence from the Diaotonghuan Cave, Northern Jiangxi. Antiquity 72:885–897

    Google Scholar 

  • Zhen Y, Ungerer MC (2008) Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. New Phytol 177:419–427

    PubMed  Google Scholar 

  • Zong Y, Chen Z, Innes JB, Chen C, Wang Z, Wang H (2007) Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449:459–462

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Gao J, He RH, Li D, Han XX, Xing JJ, Li Q, Cao ML (2012) QTL mapping for cold resistance at seedling stage in Dongxiang wild rice. Hybrid rice 27:56–59 (Chinese)

    Google Scholar 

Download references

Acknowledgments

We are grateful for the technical support provided by Biomarker Technologies Co., LTD in Beijing, and to IRRI for kindly providing us with rice germplasms. We also greatly appreciate David Zaitlin and Pedro Rocha for editing the manuscript and for help with the language. This research was supported by National Natural Science Foundation of China (31101211, 31371603 and 31371596) and by the National High Technology Research and Development Program of China (2014AA10A600).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiyan Chen.

Additional information

Communicated by M. Wissuwa.

D. Mao and L. Yu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 619 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, D., Yu, L., Chen, D. et al. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor Appl Genet 128, 1359–1371 (2015). https://doi.org/10.1007/s00122-015-2511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2511-3

Keywords

Navigation