Skip to main content
Log in

Defence gene expression profiling to Ascochyta rabiei aggressiveness in chickpea

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Significant differences in defence pathway-related gene expression were observed among chickpea cultivars following A. rabiei infection. Differential gene expression is indicative of diverse resistances, a theoretical tool for selective breeding.

Abstract

A high number of Ascochyta rabiei pathotypes infecting chickpea in Australia has severely hampered efforts towards breeding for sustained quantitative resistance in chickpea. Breeding for sustained resistance will be aided by detailed knowledge of defence responses to isolates with different aggressiveness. As an initial step, the conserved and differential expressions of a suit of previously characterised genes known to be involved in fungal defence mechanisms were assessed among resistant and susceptible host genotypes following inoculation with high or low aggressive A. rabiei isolates. Using quantitative Real-Time PCR (qRT-PCR), 15 defence-related genes, normalised with two reference genes, were temporally differentially expressed (P < 0.005) as early as 2 h post inoculation of Genesis090 (resistant) or Kaniva (susceptible). The highly aggressive isolate, 09KAL09, induced vastly different expression profiles of eight key defence-related genes among resistant and susceptible genotypes. Six of these same genes were differentially expressed among ten host genotypes, inclusive of the best resistance sources within the Australian chickpea breeding program, indicating potential use for discrimination and selection of resistance “type” in future breeding pursuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam SS, Bilton JM, Slavin AMZ, Williams DJ, Sheppard RN, Strange RN (1989) Chickpea blight: production of the phytotoxins solanapyrones A and C by Ascochyta rabiei. Phytochemist 28:2627–2630

    Article  CAS  Google Scholar 

  • Armstrong-Cho C, Gossen BD (2005) Impact of glandular hair exudates on infection of chickpea by Ascochyta rabiei. Can J Bot 83:22–27

    Article  Google Scholar 

  • Balaji V, Smart CD (2012) Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res 21:23–37

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-1 FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32

    Article  CAS  PubMed  Google Scholar 

  • Carter JM (1999) Chickpea growers guide: a guide for the production of chickpeas. Department of Natural Resources and Environment, Agriculture, Victoria, Australia, p 20

  • Castro P, Román B, Rubio J, Die JV (2012) Selection of reference genes for expression studies in Cicer arietinum L.: analysis of cyp81E3 gene expression against Ascochyta rabiei. Mol Breed 29:261–274

    Article  Google Scholar 

  • Chen W, Coyne CJ, Peever TL, Muehlbauer FJ (2004) Characterization of chickpea differentials for pathogenicity assay of ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol 53:759–769

    Article  Google Scholar 

  • Chiang CC, Hadwiger LA (1990) Cloning and characterization of a disease resistance response gene in pea inducible by Fusarium solani. Mol Plant Microbe Interact 3:78–85

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Muehlbauer FJ (2004) Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 64:57–66

    Article  CAS  Google Scholar 

  • Coelho LP, Peng T, Robert FM (2010) Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics 26:i7–i12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coram TE, Pang EC (2005a) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66:192–200

    Article  CAS  Google Scholar 

  • Coram TE, Pang EC (2005b) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part II. Microarray expression analysis of putative defence-related ESTs. Physiol Mol Plant Pathol 66:201–210

    Article  CAS  Google Scholar 

  • Coram TE, Pang EC (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotech J 4:647–666

    Article  CAS  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  CAS  PubMed  Google Scholar 

  • Dalal RC, Strong VM, Weston EJ, Cooper JE, Wildermuth GB, Lehane KJ, King AJ, Holmes CJ (1998) Sustaining productivity of a Vertisol at Warra, Queensland, with fertilisers, no-tillage, or legumes. 5. Wheat yields, nitrogen benefits and water-use efficiency of chickpea-wheat rotation. Anim Prod Sci 38:489–501

    Article  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3004

    Article  Google Scholar 

  • Dou D, Kale SD, Wang X, Jiang RH, Bruce NA, Arredondo FD, Zhang X, Tyler BM (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell Online 20:1930–1947

    Article  CAS  Google Scholar 

  • Edereva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott VL, Taylor PW, Ford R (2011) Pathogenic variation within the 2009 Australian Ascochyta rabiei population and implications for future disease management strategy. Australas Plant Pathol 40:568–574

    Article  Google Scholar 

  • Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN (2009) Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Op Plant Biol 12:399–405

    Article  CAS  Google Scholar 

  • FAOSTAT (2013) Food and Agriculture Organization of the United Nations. http://faostat.fao.org/. Accessed 13 Feb 2014

  • Flandez-Galvez H, Ades PK, Ford R, Pang ECK, Taylor PWJ (2003) QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the realtime qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  CAS  PubMed  Google Scholar 

  • Gaur RB, Singh RD (1996) Effects of Ascochyta blight on grain yield and protein in chickpea. Indian J Mycol Plant Pathol 26:259–262

    Google Scholar 

  • Hanselle T, Barz W (2001) Purification and characterisation of the extracellular PR-2b β-1, 3-glucanase accumulating in different Ascochyta rabiei infected chickpea (Cicer arietinum L.) cultivars. Plant Sci 161:773–781

    Article  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohl B, Pfautsch M, Barz W (1990) Histology of disease development in resistant and susceptible cultivars of chickpea (Cicer arietinum L.) inoculated with spores of Ascochyta rabiei. J Phytopathol 129:31–45

    Article  Google Scholar 

  • Huettel B, Santra D, Muehlbauer FJ, Kahl G (2002) Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105:479–490

    Article  CAS  PubMed  Google Scholar 

  • Iruela M, Rubio J, Barro F, Cubero JI, Millán T, Gil J (2006) Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287

    Article  CAS  PubMed  Google Scholar 

  • Jiang RH, Tripathy S, Govers F, Tyler BM (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc Natl Acad Sci 105:4874–4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible WR, Stitt M, Torres-Jerez I, Xiao Y, Redman JC, Wu HC, Cheung F, Town CD, Udvardi MK (2008) A community resource for highthroughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Meth 4:18

    Article  Google Scholar 

  • Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che FS (2009) The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J 28:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanouni H, Arbat HK, Moghaddam M, Neyshabouri MR (2002) Selection of chickpea (Cicer arietinum L) entries for drought resistance. Agri Sci (Tabriz) 12:109–121

    Google Scholar 

  • Kaur S (1995) Phytotoxicity of solanapyrones produced by the fungus Ascochyta rabiei and their possible role in blight of chickpea (Cicer arietinum). Plant Sci 109:21–29

    Article  Google Scholar 

  • Köhler G, Linkert C, Barz W (1995) Infection studies of Cicer arietinum (L.) with GUS-(E. coli β-glucuronidase) transformed Ascochyta rabiei strains. J Phytopathol 143:589–595

    Article  Google Scholar 

  • Kombrink E, Schmelzer E (2001) The hypersensitive response and its role in local and systemic disease resistance. Euro J Plant Pathol 107:69–78

    Article  Google Scholar 

  • Leo AE, Ford R, Linde CC, Shah RM, Oliver R, Taylor PWJ, Lichtenzveig J (2011) Characterization of fifteen newly developed microsatellite loci for the chickpea fungal pathogen Ascochyta rabiei. Mol Ecol Res 11:418–421

    Article  Google Scholar 

  • Leo AE, Ford R, Linde CC (2015) Genetic homogeneity of a recently introduced pathogen of chickpea, Ascochyta rabiei, to Australia. Biol Inv 17:609–623

    Article  Google Scholar 

  • Madrid E, Gil J, Rubiales D, Krajinski F, Schlereth A, Millán T (2010) Transcription factor profiling leading to the identification of putative transcription factors involved in the Medicago truncatulaUromyces striatus interaction. Theo Appl Gen 121:1311–1321

    Article  CAS  Google Scholar 

  • Madrid E, Rajesh PN, Rubio J, Gil J, Millán T, Chen W (2012) Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTLAR1 implicated in ascochyta blight resistance in chickpea. Plant Cell Rep 31:1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Madrid E, Chen W, Rajesh PN, Castro P, Millán T, Gil J (2013) Allele-specific amplification for the detection of ascochyta blight resistance in chickpea. Euphytica 189:183–190

    Article  CAS  Google Scholar 

  • Markham JE, Hille J (2001) Host-selective toxins as agents of cell death in plant–fungus interactions. Mol Plant Pathol 2:229–239

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Ann Rev Plant Biol 47:127–158

    Article  CAS  Google Scholar 

  • Matsuoka M, Ohashi Y (1986) Induction of pathogenesis-related proteins in tobacco leaves. Plant Physiol 80:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Ann Rev Phytopathol 40:349–379

    Article  CAS  Google Scholar 

  • Meiyalaghan S, Thomson SJ, Fiers MW, Barrell PJ, Latimer JM, Mohan S, Eirian Jones E, Conner AJ, Jacobs JM (2014) Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status. BMC Genom 15:2

    Article  Google Scholar 

  • Nasir M, Bretag TW, Kaiser WJ, Meredith KS, Brouwer JB (2000) Screening chickpea germplasm for ascochyta blight resistance. Australas Plant Pathol 29:102–107

    Article  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Botany 53:1237–1247

    Article  CAS  Google Scholar 

  • Nene YL, Reddy MV, Saxena MC, Singh KB (1987) Chickpea diseases and their control. Chickpea 233–270

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Gowda TW, Bretag TW, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Crop Pasture Sci 56:317–332

    Article  Google Scholar 

  • Pandey BK, Singh US, Chaube HS (1987) Mode of infection of Ascochyta blight of chickpea caused by Ascochyta rabiei. J Phytopathol 119:88–93

    Article  Google Scholar 

  • Palomino C, Fernández-Romero MD, Rubio J, Torres A, Moreno MT, Millán T (2009) Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theor Appl Genet 118(4):671–82

    Article  CAS  PubMed  Google Scholar 

  • Pelegrini PB, Perseghini del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int. doi:10.1155/2011/250349

    Google Scholar 

  • Peng H, Yu XW, Cheng HY, Shi QH, Zhang H, Li JG, Ma H (2010) Cloning and characterization of a novel NAC family gene CarNAC1 from Chickpea (Cicer arietinum L.). Mol Biotechnol 44:30–40

    Article  CAS  PubMed  Google Scholar 

  • Phan HTT, Ford R, Taylor PWJ (2003) Population structure of Ascochyta rabiei in Australia based on STMS fingerprints. Fungal Div 13:111–129

    Google Scholar 

  • Pradhan P (2006) Studies of Ascochyta rabiei in Australia. M Agr Sci thesis, University of Melbourne

  • Pulse Australia (2009a) Almaz. Pulse variety management package. http://www.pulseaus.com.au/storage/app/media/crops/2009_VMP-Kchickpea-Almaz.pdf. Accessed 24 July 2015

  • Pulse Australia (2009b) Flipper. Pulse variety management package. http://www.pulseaus.com.au/storage/app/media/crops/2009_VMP-Dchickpea-Flipper.pdf. Accessed 24 July 2015

  • Pulse Australia (2009c) Genesis090. Pulse variety management package. http://www.pulseaus.com.au/storage/app/media/crops/2011_VMP-Kchickpea-Genesis090.pdf. Accessed 24 July 2015

  • Pulse Australia (2009d) Genesis114. Pulse variety management package. http://www.pulseaus.com.au/storage/app/media/crops/2010_VMP-Kchickpea-Genesis114.pdf. Accessed 24 July 2015

  • Pulse Australia (2009e) Genesis509. Pulse variety management package. http://www.pulseaus.com.au/storage/app/media/crops/2009_VMP-Dchickpea-Genesis509.pdf. Accessed 24 July 2015

  • Pulse Breeding Australia (2009) PBA HatTrick. http://www.pulseaus.com.au/storage/app/media/crops/2011_VMP-Dchickpea-PBAHatTrick.pdf. Accessed 24 July 2015

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Segura A, Moreno M, Madueno F, Molina A, Garcia-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Kim MJ, Park JY, Kim SY, Jeon J, Lee YH, Kim J, Park CM (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J 61:661–671

    Article  CAS  PubMed  Google Scholar 

  • Singh KB (1997) Chickpea (Cicer arietinum L.). Field Crops Res 53:161–170

    Article  Google Scholar 

  • Singh KB, Reddy MV (1993) Sources of resistance to ascochyta blight in wild Cicer species. Neth J Plant Pathol 99:163–167

    Article  Google Scholar 

  • Singh KB, Hawtin GC, Nene YL, Reddy MV (1981) Resistance in chickpea to ascochyta blight. Plant Dis 65:586–587

    Article  Google Scholar 

  • Staples RC, Mayer AM (2003) Suppression of host resistance by fungal plant pathogens REVIEW. Israel J Plant Sci 51:173–184

    Article  CAS  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tar’an B, Warkentin T, Tullu A, Vandenberg A (2007) Genetic relationships among Chickpea (Cicer arietinum L.) genotypes based on the SSRs at the quantitative trait loci for resistance to Ascochyta blight. Eur J Plant Pathol 119:39–51

  • Vaghefi N, Mustafa BM, Dulal N, Selby-Pham J, Taylor PWJ, Ford R (2013) A novel pathogenesis-related protein (LcPR4a) from lentil, and its involvement in defence against Ascochyta lentis. Phytopathol Mediterranea 52:192–201

    CAS  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Sharpe AG, Cannon S et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotech 31:240–246

    Article  CAS  Google Scholar 

  • Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blázquez MA, Carbonell J (2010) Role of polyamines in plant vascular development. Plant Physiol Biochem 48:534–539

    Article  CAS  PubMed  Google Scholar 

  • Vogelsang R, Barz W (1993) Purification, characterization and differential hormonal regulation of a β-1, 3-glucanase and two chitinases from chickpea (Cicer arietinum L.). Planta 189:60–69

    Article  CAS  PubMed  Google Scholar 

  • Waduwara-Jayabahu I, Oppermann Y, Wirtz M, Hull ZT, Schoor S, Plotnikov AN, Sauter M, Moffatt BA (2012) Recycling of methylthioadenosine is essential for normal vascular development and reproduction in Arabidopsis. Plant Physiol 158:1728–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Pang H, Bartlam M, Rao Z (2005) Crystal structure of human E1 enzyme and its complex with a substrate analog reveals the mechanism of its phosphatase/enolase activity. J Mol Biol 348:917–926

    Article  CAS  PubMed  Google Scholar 

  • Wang XE, Basnayake BVS, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant-Microbe Interact 22:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Wigoda N, Ben-Nissan G, Granot D, Schwartz A, Weiss D (2006) The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant J 48:796–805

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by an Australian Research Council-Linkage grant (LP0990385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Ford.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by D. A Lightfoot.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leo, A.E., Linde, C.C. & Ford, R. Defence gene expression profiling to Ascochyta rabiei aggressiveness in chickpea. Theor Appl Genet 129, 1333–1345 (2016). https://doi.org/10.1007/s00122-016-2706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2706-2

Keywords

Navigation