Skip to main content
Log in

Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization.

Abstract

The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC–MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

[modified from Mazourek et al. (2009)]

Fig. 9

Similar content being viewed by others

References

  • Abraham-Juarez MD, Rocha-Granados MD, López MG, Rivera-Bustamante RF, Ochoa-Alejo N (2008) Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227:681–695

    Article  Google Scholar 

  • Aluru MR, Mazourek M, Landry LG, Curry J, Jahn M, O’Connell MA (2003) Differential expression of fatty acid synthase genes, Acl, Fat and Kas, in Capsicum fruit. J Exp Bot 54:1655–1664

    Article  CAS  Google Scholar 

  • Andrews J (1984) Peppers: the domesticated Capsicums. University of Texas Press, Austin

    Google Scholar 

  • Arce-Rodríguez ML, Ochoa-Alejo N (2017) An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis. Plant Physiol 174:1359–1370

    Article  Google Scholar 

  • Aza-Gonzalez C, Nunez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep 30:695–706

    Article  CAS  Google Scholar 

  • Bachem CW, Horvath B, Trindade L, Claassens M, Davelaar E, Jordi W, Visser RG (2001) A potato tuber-expressed mRNA with homology to steroid dehydrogenases affects gibberellin levels and plant development. Plant J 25:595–604

    Article  CAS  Google Scholar 

  • Bennett DJ, Kirby GW (1968) Constitution and biosynthesis of capsaicin. J Chem Soc C 4:442–446

    Article  Google Scholar 

  • Bhattacharyya MK, Smith AM, Ellis THN et al (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–122

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  • Borovsky Y, Oren-Shamir M, Ovadia R, De Jong W, Paran I (2004) The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia. Theor Appl Genet 109:23–29

    Article  CAS  Google Scholar 

  • Bosland PW, Votava EJ (2000) Peppers: vegetable and spice capsicums. CABI Publishing, New York

    Google Scholar 

  • Brosché M, Strid A (1999) Cloning, expression, and molecular characterization of a small pea gene family regulated by low levels of ultraviolet B radiation and other stresses. Plant Physiol 121:479–487

    Article  Google Scholar 

  • Calderon-Urrea A, Dellaporta SL (1999) Cell death and cell protection genes determine the fate of pistils in maize. Development 126:435–441

    CAS  PubMed  Google Scholar 

  • Carrizo García C, Barfuss MH, Sehr EM, Barboza GE, Samuel R, Moscone EA, Ehrendorfer F (2016) Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann Bot 118:35–51

    Article  Google Scholar 

  • Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci De Novo from short-read sequences. G3 1:171–182

    Article  CAS  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cells 17:377–380

    CAS  PubMed  Google Scholar 

  • Curry J, Aluru M, Mendoza M, Nevarez J, Melendrez M, O’Connell MA (1999) Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci 148:47–57

    Article  CAS  Google Scholar 

  • DeLong A, Calderon-Urrea A, Dellaporta SL (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:757–768

    Article  CAS  Google Scholar 

  • Fernandez-Pozo N, Rosli HG, Martin GB, Mueller LA (2015) The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant 8:486–488

    Article  CAS  Google Scholar 

  • Fisher M, Kroon JT, Martindale W, Stuitje AR, Slabas AR, Rafferty JB (2000) The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure 15:339–347

    Article  Google Scholar 

  • Govindarajan VS (1985) Capsicum: production, technology, chemistry and quality. 1. History, botany, cultivation and primary processing. Crit Rev Food Sci Nutr 22:109–176

    Article  CAS  Google Scholar 

  • Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspective. Crit Rev Plant Sci 21:273–322

    Article  CAS  Google Scholar 

  • Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK, Kang BC (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J. https://doi.org/10.1111/pbi.12894

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobsen SE, Olszewski NE (1996) Gibberellins regulate the abundance of RNAs with sequence similarity to proteinase inhibitors, dioxygenases and dehydrogenases. Planta 198:78–86

    Article  CAS  Google Scholar 

  • Kavanagh KL, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    Article  CAS  Google Scholar 

  • Kim M, Kim S, Kim S, Kim BD (2001) Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization. Mol Cells 11:213–219

    CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  Google Scholar 

  • Kim J, Park M, Jeong ES, Lee JM, Choi D (2017) Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods 13:3

    Article  Google Scholar 

  • Kirii E, Goto T, Yoshida Y, Yasuba K, Tanaka Y (2017) Non-pungency in a Japanese chili pepper landrace (Capsicum annuum) is caused by a novel loss-of-function Pun1 allele. Hort J 86:61–69

    Article  Google Scholar 

  • Koeda S, Sato K, Tomi K, Tanaka Y, Takisawa R, Hosokawa M, Doi M, Nakazaki T, Kitajima A (2014) Analysis of non-pungency, aroma, and origin of a Capsicum chinense cultivar from a Caribbean island. J Jpn Soc Hort Sci 83:244–251

    Article  CAS  Google Scholar 

  • Koeda S, Sato K, Takisawa R, Kitajima A (2015a) Inheritance of non-pungency in ‘No.3341’ (Capsicum chinense). Hort J 84:323–326

    Article  CAS  Google Scholar 

  • Koeda S, Sato K, Tanaka Y, Takisawa R, Kitajima A (2015b) A Comt1 loss of function mutation is insufficient for loss of pungency in Capsicum. Am J Plant Sci 6:1243–1255

    Article  CAS  Google Scholar 

  • Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lang Y, Kisaka H, Sugiyama R, Nomura K, Morita A, Watanabe T, Tanaka Y, Yazawa S, Miwa T (2009) Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 sweet. Plant J 59:953–961

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Lee JM, Kim S, Lee JY, Yoo JY, Cho MC, Cho MR, Kim BD, Bahk YY (2006) A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development. Proteomics 6:5248–5259

    Article  CAS  Google Scholar 

  • Leete E, Louden MCL (1968) Biosynthesis of capsaicin and dihydrocapsaicin in Capsicum frutescens. J Am Chem Soc 9:6837–6841

    Article  Google Scholar 

  • Liu W, Parrott WA, Hildebrand DF, Collins GB, Williams EG (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep 9:360–364

    CAS  PubMed  Google Scholar 

  • Liu S, Li W, Wu Y, Chen C, Lei J (2013) De Novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS ONE 8:e48156

    Article  CAS  Google Scholar 

  • Liu L, Venkatesh J, Jo YD, Koeda S, Hosokawa M, Kang JH, Goritschnig S, Kang BC (2016) Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper (Capsicum chinense). Theor Appl Genet 129:1541–1556

    Article  CAS  Google Scholar 

  • Maligeppagol M, Manjula R, Navale PM, Babu KP, Kumbar BM, Laxman RH (2016) Genetic transformation of chilli (Capsicum annuum L.) with Dreb1A transcription factor known to impart drought tolerance. Indian J Biotechnol 15:17–24

    CAS  Google Scholar 

  • Mazourek M, Pujar A, Borovsky Y, Paran I, Mueller L, Jahn MM (2009) A dynamic interface for capsaicinoid systems biology. Plant Physiol 150:1806–1821

    Article  CAS  Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K, Hirano H, Yamamura S (2006) Two different transposable elements inserted in flavonoid 3′,5′-hydroxylase gene contribute to pink flower coloration in Gentian scabra. Mol Genet Genom 275:231–241

    Article  CAS  Google Scholar 

  • Narasimha Prasad BC, Gururaj HB, Kumar V, Giridhar P, Parimalan R, Sharma A, Ravishankar GA (2006) Influence of 8-methyl-nonenoic acid on capsaicin biosynthesis in in vivo and in vitro cell cultures of Capsicum spp. J Agric Food Chem 54:1854–1859

    Article  Google Scholar 

  • Ogawa K, Murota K, Shimura H, Furuya M, Togawa Y, Matsumura T, Masuta C (2015) Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. BMC Plant Biol 15:93. https://doi.org/10.1186/s12870-015-0476-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YJ, Nishikawa T, Minami M, Nemoto K, Iwasaki T, Matsushima K (2015) A low-pungency S3212 genotype of Capsicum frutescens caused by a mutation in the putative aminotransferase (p-AMT) gene. Mol Genet Genom 290:2217–2224

    Article  CAS  Google Scholar 

  • Perry L, Dickau R, Zarrillo S et al (2007) Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986–988

    Article  CAS  Google Scholar 

  • Persson B, Kallberg Y, Oppermann U, Jörnvall H (2003) Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 143–144:271–278

    Article  Google Scholar 

  • Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133

    Article  Google Scholar 

  • Picton S, Gray J, Barton S, AbuBakar U, Lowe A, Grierson D (1993) cDNA cloning and characterisation of novel ripening-related mRNAs with altered patterns of accumulation in the ripening inhibitor (rin) tomato ripening mutant. Plant Mol Biol 23:193–207

    Article  CAS  Google Scholar 

  • Qin C, Yu CS, Shen YO et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140

    Article  CAS  Google Scholar 

  • Sakaguchi S, Sugino T, Tsumura Y et al (2015) High-throughput linkage mapping of Australian white cypress pine (Callitris glaucophylla) and map transferability to related species. Tree Genet Genom 11:121

    Article  Google Scholar 

  • Sakurai N, Ara T, Enomoto M, Motegi T, Morishita Y, Kurabayashi A, Iijima Y, Ogata Y, Nakajima D, Suzuki H, Shibata D (2014) Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data. Biomed Res Int 194812

  • Steinitz B, Wolf D, Matzevitch-Josef T, Zelcer A (1999) Regeneration in vitro and genetic transformation of pepper (Capsicum spp.): the current state of the art. Capsicum Eggplant Plant Newsl 18:9–15

    Google Scholar 

  • Stellari GM, Mazourek M, Jahn MM (2010) Contrasting modes for loss of pungency between cultivated and wild species of Capsicum. Heredity 104:460–471

    Article  CAS  Google Scholar 

  • Stewart C Jr, Kang BC, Liu K, Mazourek M, Moore SL, Eun YY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Article  CAS  Google Scholar 

  • Stewart C Jr, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58:979–991

    Article  CAS  Google Scholar 

  • Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010a) Newly mutated putative-aminotransferase in non-pungent pepper (Capsicum annuum) results in biosynthesis of capsinoids, capsaicinoid analogues. J Agric Food Chem 58:1761–1767

    Article  CAS  Google Scholar 

  • Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010b) Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, non-pungent capsaicinoid analogues, in mildly pungent chili peppers (Capsicum chinense). J Agric Food Chem 58:11762–11767

    Article  CAS  Google Scholar 

  • Tanaka Y, Sonoyama T, Muraga Y, Koeda S, Goto T, Yoshida Y, Yasuba K (2015) Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in Capsicum chinense. Mol Breed 35:142

    Article  Google Scholar 

  • Tanaka Y, Fukuta S, Koeda S, Goto T, Yoshida Y, Yasuba K (2018) Identification of a novel mutant pAMT allele responsible for low-pungency and capsinoid production in chili pepper accession ‘No.4034’ (Capsicum chinense). Hort J 87:222–228

    Article  Google Scholar 

  • Vitte C, Fustier MA, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Brief Funct Genom 13:276–295

    Article  Google Scholar 

  • Wessler SR, Baran G, Varagona M, Dellaporta SL (1986) Excision of Ds produces waxy proteins with a range of enzymatic activities. EMBO J 5:2427–2432

    Article  CAS  Google Scholar 

  • White SW, Zheng J, Zhang YM, Rock CO (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831

    Article  CAS  Google Scholar 

  • Wu X, Knapp S, Stamp A, Stammers DK, Jörnvall H, Dellaporta SL, Oppermann U (2007) Biochemical characterization of TASSELSEED 2, an essential plant short-chain dehydrogenase/reductase with broad spectrum activities. FEBS J 274:1172–1182

    Article  CAS  Google Scholar 

  • Yazawa S, Ueda M, Suetome N, Namiki T (1989) Capsaicinoids content in the fruit of interspecific hybrids in Capsicum. J Jpn Soc Hort Sci 58:353–360

    Article  CAS  Google Scholar 

  • Zhang ZX, Zhao SN, Liu GF, Huang ZM, Cao ZM, Cheng SH, Lin SS (2016) Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper. Sci Rep 6:38081

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daiki Matsumoto (Yamagata University) for help and advice with the experiments. We would also like to thank Katsuki Ijichi, Ayaka Asami, and Maiko Sofue (Kindai University) for technical assistance with VIGS. This work was supported by JSPS KAKENHI Grant Numbers 25850018, 16K07605, and the Kyoto University research fund for young scientists: Start-up to SK.

Author information

Authors and Affiliations

Authors

Contributions

SK designed the experiments; performed physical mapping, gene expression analysis, GC–MS, and VIGS; analyzed the data; and interpreted the results and wrote the manuscript. KS cultivated and performed the phenotypic evaluation of F1 and F2 populations. HS performed linkage analysis of RAD-seq data. AJN, MY, and HK performed RAD-seq. YT performed HPLC analysis and sequence analysis of transposable element. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sota Koeda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Accession numbers

Accession numbers for each of the gene sequences referred to in this work are as follows: genomic sequences of CaKR1 of Habanero (LC379873) and No.3341 (LC379874), and mRNA sequences of Habanero (LC379875) and No.3341 (LC379876).

Additional information

Communicated by Sanwen Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koeda, S., Sato, K., Saito, H. et al. Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. Theor Appl Genet 132, 65–80 (2019). https://doi.org/10.1007/s00122-018-3195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3195-2

Navigation