Skip to main content
Log in

Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Genome-wide analysis of maize GPAT gene family, cytological characterization of ZmMs33/ZmGPAT6 gene encoding an ER-localized protein with four conserved motifs, and its molecular breeding application in maize.

Abstract

Glycerol-3-phosphate acyltransferase (GPAT) mediates the initial step of glycerolipid biosynthesis and plays pivotal roles in plant growth and development. Compared with GPAT genes in Arabidopsis, our understanding to maize GPAT gene family is very limited. Recently, ZmMs33 gene has been identified to encode a sn-2 GPAT protein and control maize male fertility in our laboratory (Xie et al. in Theor Appl Genet 131:1363–1378, 2018). However, the functional mechanism of ZmMs33 remains elusive. Here, we reported the genome-wide analysis of maize GPAT gene family and found that 20 maize GPAT genes (ZmGPAT1-20) could be classified into three distinct clades similar to those of ten GPAT genes in Arabidopsis. Expression analyses of these ZmGPAT genes in six tissues and in anther during six developmental stages suggested that some of ZmGPATs may play crucial roles in maize growth and anther development. Among them, ZmGPAT6 corresponds to the ZmMs33 gene. Systemic cytological observations indicated that loss function of ZmMs33/ZmGPAT6 led to defective anther cuticle, arrested degeneration of anther wall layers, abnormal formation of Ubisch bodies and exine and ultimately complete male sterility in maize. The endoplasmic reticulum-localized ZmMs33/ZmGPAT6 possessed four conserved amino acid motifs essential for acyltransferase activity, while ZmMs33/ZmGPAT6 locus and its surrounding genomic region have greatly diversified during evolution of gramineous species. Finally, a multi-control sterility system was developed to produce ms33 male-sterile lines by using a combination strategy of transgene and marker-assisted selection. This work will provide useful information for further deciphering functional mechanism of ZmGPAT genes and facilitate molecular breeding application of ZmMs33/ZmGPAT6 gene in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ACP:

Acyl carrier protein

BLASTP:

Basic local alignment searching tool-protein to protein

CMS:

Cytoplasmic male sterility

CRISPR:

Clustered regularly interspersed short palindromic repeats

ER:

Endoplasmic reticulum

GPAT:

Glycerol-3-phosphate acyltransferase

LPA:

Lysophosphatidic acid

2-MAG:

sn-2 Monoacylglycerol

MAS:

Marker-assisted selection

MCS:

Multi-control sterility

MEGA:

Molecular evolutionary genetics analysis

qPCR:

Quantitative PCR

RT:

Reverse transcription

SEM:

Scanning electron microscopy

SPT:

Seed production technology

TEM:

Transmission electron microscopy

WT:

Wild type

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An X, Dong Z, Tian Y, Xie K, Wu S, Zhu T, Zhang D, Zhou Y, Niu C, Ma B, Hou Q, Bao J, Zhang S, Li Z, Wang B, Yan T, Sun X, Zhang Y, Li J, Wan X (2019) ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant 12:343–359

    Article  CAS  PubMed  Google Scholar 

  • Beisson F, Li-Beisson Y, Pollard M (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15:329–337

    Article  CAS  PubMed  Google Scholar 

  • Chang Z, Chen Z, Wang N, Xie G, Lu J, Yan W, Zhou J, Tang X, Deng XW (2016) Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA 113:14145–14150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cigan AM, Singh M, Benn G, Feigenbutz L, Kumar M, Cho MJ, Svitashev S, Young J (2017) Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnol J 15:379–389

    Article  CAS  PubMed  Google Scholar 

  • Djukanovic V, Smith J, Lowe K, Yang M, Gao H, Jones S, Nicholson MG, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Alexander Lyznik L (2013) Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J 76:888–899

    Article  CAS  PubMed  Google Scholar 

  • Gidda SK, Shockey JM, Rothstein SJ, Dyer JM, Mullen RT (2009) Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiol Biochem 47:867–879

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  CAS  PubMed  Google Scholar 

  • Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Botanical Rev 64:240–272

    Article  Google Scholar 

  • Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci U S A 104:18339–18344

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XC, Zhu J, Yang J, Zhang GR, Xing WF, Zhang S, Yang ZN (2012) Glycerol-3-phosphate acyltransferase 6 (GPAT6) is important for tapetum development in Arabidopsis and plays multiple roles in plant fertility. Mol Plant 5:131–142

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci U S A 106:22008–22013

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Yi Chuan 25:317–321

    PubMed  Google Scholar 

  • Men X, Shi J, Liang W, Zhang Q, Lian G, Quan S, Zhu L, Luo Z, Chen M, Zhang D (2017) Glycerol-3-phosphate acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. J Exp Bot 68:513–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millwood RJ, Moon HS, Poovaiah CR, Muthukumar B, Rice JH, Abercrombie JM, Abercrombie LL, Green WD, Stewart CN Jr (2016) Engineered selective plant male sterility through pollen-specific expression of the EcoRI restriction endonuclease. Plant Biotechnol J 14:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Nishida I, Tasaka Y, Shiraishi H, Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21:267–277

    Article  CAS  PubMed  Google Scholar 

  • Patterson EB (1995) Tests of male sterile mutants. Maize Genet Coop Newsl 69:126–128

    Google Scholar 

  • Petit J, Bres C, Mauxion JP, Tai FW, Martin LB, Fich EA, Joubes J, Rose JK, Domergue F, Rothan C (2016) The glycerol-3-phosphate acyltransferase GPAT6 from tomato plays a central role in fruit cutin biosynthesis. Plant Physiol 171:894–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribarits A, Mamun AN, Li S, Resch T, Fiers M, Heberle-Bors E, Liu CM, Touraev A (2007) Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. Plant Biotechnol J 5:483–494

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Shockey J, Regmi A, Cotton K, Adhikari N, Browse J, Bates PD (2016) Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis. Plant Physiol 170:163–179

    Article  CAS  PubMed  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J (2019) Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant 12:321–342

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu D, Tian Y, Wu S, An X, Dong Z, Zhang S, Bao J, Li Z, Li J, Wan X (2019) Map-based cloning, phylogenetic, and microsynteny analyses of ZmMs20 gene regulating male fertility in maize. Int J Mol Sci 20:1411. https://doi.org/10.3390/ijms20061411

    Article  PubMed Central  Google Scholar 

  • Wu Y, Fox TW, Trimnell MR, Wang L, Xu RJ, Cigan AM, Huffman GA, Garnaat CW, Hershey H, Albertsen MC (2016) Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J 14:1046–1054

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Wu S, Li Z, Zhou Y, Zhang D, Dong Z, An X, Zhu T, Zhang S, Liu S, Li J, Wan X (2018) Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theor Appl Genet 131:1363–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C (2006) Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3- phosphate acyltransferase. Plant J 47:296–309

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160:638–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38:379–390

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Wu S, An X, Xie K, Dong Z, Zhou Y, Xu L, Fang W, Liu S, Liu S, Zhu T, Li J, Rao L, Zhao J, Wan X (2018a) Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J 16:459–471

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Luo H, Zhao Y, Chen X, Huang Y, Yan S, Li S, Liu M, Huang W, Zhang X, Jin W (2018b) Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC Plant Biol 18:318. https://doi.org/10.1186/s12870-018-1543-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J (2003) Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15:1872–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Transgenic Major Program of China (2018ZX0800922B, 2018ZX0801006B), the National Key R&D Program of China (2017YFD0102001, 2018YFD0100806, 2017YFD0101201), the National Natural Science Foundation of China (31771875, 31871702), the Fundamental Research Funds for the Central Universities of China (06500060, FRF-TP-18-013A1, FRF-TP-18-014A1), the “Ten Thousand Plan”-National High Level Talents Special Support Plan (for Xiangyuan Wan) and the Beijing Talents Foundation From Organization department of Beijing Municipal committee of CPC (For Xiangyuan Wan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyuan Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that the experiments comply with the current laws of China.

Additional information

Communicated by Michael Gore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Wu, S., Zhang, D. et al. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene. Theor Appl Genet 132, 2137–2154 (2019). https://doi.org/10.1007/s00122-019-03343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03343-y

Navigation