Skip to main content
Log in

Tectonic configuration of the Apuseni–Banat—Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re–Os molybdenite ages

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Apuseni–Banat–Timok–Srednogorie magmatic–metallogenic belt (ABTS belt), forms a substantial metallogenic province in the Balkan-South Carpathian system in southeastern Europe. The belt hosts porphyry, skarn, and epithermal deposits mined since pre-Roman times. Generally, the deposits, prospects, and occurrences within the belt are linked to magmatic centers of calc-alkaline affinity. Fifty-one rhenium-osmium (Re–Os) ages and Re concentration data for molybdenites define systematic geochronologic trends and constrain the geochemical-metallogenic evolution of the belt in space and time. From these data and additional existing geologic-geochemical data, a general tectonic history for the belt is proposed. Mineralization ages in Apuseni-Banat, Timok, and Panagyurishte (the central district of the larger E–W Srednogorie Zone) range from 72–83, 81–88, and 87–92 Ma, respectively, and clearly document increasing age from the northwestern districts to the southeastern districts. Further, Re–Os ages suggest rapidly migrating pulses of Late Cretaceous magmatic–hydrothermal activity with construction of deposits in ~1 m.y., districts in ~10 m.y., and the entire 1,500 km belt in ~20 m.y. Ages in both Timok and Panagyurishte show systematic younging, while deposit ages in Banat and Apuseni are less systematic reflecting a restricted evolution of the tectonic system. Systematic differences are also observed for molybdenite Re concentrations on the belt scale. Re concentrations generally range from hundreds to thousands of parts per million, typical of subduction-related Cu–Au–Mo–(PGE) porphyry systems associated with the generation of juvenile crust. The geochronologic and geochemical trends are compatible with proposed steepening of subducting oceanic slab and relaxation of upper continental plate compression. Resulting influx of sub-continental mantle lithosphere (SCML) and asthenosphere provide a fertile metal source and heat, while the subducting slab contributes connate and mineral dehydration fluids, which facilitate partial melting and metal leaching of SCML and asthenosphere. Cu–Au–Mo–(PGE) porphyry deposits may develop where melts are trapped at shallow crustal levels, often with associated volcanism and epithermal-style deposits (South Banat, Timok, and Panagyurishte). Mo–Fe–Pb–Zn skarn deposits may develop where felsic melts are trapped adjacent to Mesozoic limestones at moderate crustal levels (North Banat and Apuseni). Systematic spatial variations in deposit style, commodity enrichment, Re–Os ages, and Re concentrations support specific tectonic processes that led to ore formation. In a post-collisional setting, subduction of Vardar oceanic crust may have stalled, causing slab steepening and rollback. The slab rollback relaxes compression, facilitating and enhancing orogenic collapse of previously thickened Balkan-South Carpathian crust. The progression of coupled rollback-orogenic collapse is evidenced by the width of Late Cretaceous extensional basins and northward younging of Re–Os ages, from Panagyurishte (~60 km; 92–87 Ma) to Timok (~20 km; 88–81 Ma) to Apuseni-Banat (~5 km; 83–72 Ma). Generation of a well-endowed mineral belt, such as the ABTS, requires a temporally and spatially restricted window of magmatic–hydrothermal activity. This window is quickly opened as upper plate compression relaxes, thereby inducing melt generation and ingress of melt to higher crustal levels. The window is just as quickly closed as upper plate compression is reinstated. The transient tectonic state responsible for economic mineralization in the ABTS belt may be a paleo-analogue to transient intervals in the present subduction tectonics of SE Asia where much mineral wealth has been created in the last few million years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiello E, Bartolini C, Boccaletti M, Gočev P, Karagjuvela J, Kostadinov V, Manetti P (1977) Sedimentary features of the Srednogorie Zone (Bulgaria): an Upper Cretaceous intra-arc basin. Sediment Geol 19:39–68

    Article  Google Scholar 

  • Berza T, Constantinescu E, Vlad SN (1998) Upper Cretaceous magmatic series and associated mineralization in the Carpathian–Balkan orogen. Resour Geol 48:291–306

    Article  Google Scholar 

  • Bingen B, Stein H (2003) Molybdenite Re–Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth Planet Sci Lett 208:181–195

    Article  Google Scholar 

  • Boccaletti M, Manetti P, Peccerillo A (1974a) Hypothesis on the plate tectonic evolution of the Carpatho-Balkan arcs. Earth Planet Sci Lett 23:193–198

    Article  Google Scholar 

  • Boccaletti M, Manetti P, Peccerillo A (1974b) The Balkanids as an instance of back-arc thrust belt: possible relation with the Hellenids. Geol Soc Amer Bull 85:1077–1084

    Article  Google Scholar 

  • Bogdanov K, Strashimirov S (eds) (2003) Cretaceous porphyry-epithermal systems of the Srednogorie Zone, Bulgaria. SEG Guidebook Series 36:133

  • Bojar AV, Neubauer F, Fritz H (1998) Cretaceous to Cenozoic thermal evolution of the southwestern South Carpathians: evidence from fission-track thermochronology. Tectonophyics 297:229–249

    Article  Google Scholar 

  • Bortolotti V, Morroni M, Nicolae I, Pandolfi L, Principi G, Saccani E (2002) Geodynamic implications of Jurassic ophiolites associated with island-arc volcanics, South Apuseni Mountains, Western Romania. Int Geol Rev 44:938–955

    Google Scholar 

  • Bortolotti V, Morroni M, Nicolae I, Pandolfi L, Principi G, Saccani E (2004) An update of the Jurassic ophiolites and associated calc-alkaline rocks in the South Apuseni Mountains (Western Romania). Ofioliti 29:5–18

    Google Scholar 

  • Burchfiel BC (1976) Geology of Romania. Geological Society of America Special Publication Series 158:82

  • Burtman V (1986) Origin of structural arcs of the Carpathian–Balkan region. Tectonophysics 127:245–260

    Article  Google Scholar 

  • Carras N, Georgala D (1998) Upper Jurassic to Lower Cretaceous carbonate facies of African affinities in a Peri-European area: Chalkidiki Peninsula, Greece. Facies 38:153–164

    Article  Google Scholar 

  • Chambefort I, Moritz R (2006) Late Cretaceous structural control and Alpine overprint of the high-sulfidation Cu–Au epithermal Chelopech deposit, Srednogorie Belt, Bulgaria. Miner Depos 41:259–280

    Article  Google Scholar 

  • Ciobanu C, Cook N, Stein H (2002) Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt. Miner Depos 37:541–567

    Article  Google Scholar 

  • Clark A, Ullrich T (2004) 40Ar/39Ar age data for andesitic magmatism and hydrothermal activity in the Timok Massif, Eastern Serbia: implications for metallogenetic relationships in the Bor copper–gold subprovince. Miner Depos 39:256–262

    Article  Google Scholar 

  • Cloetingh S, Van Wees JD (2005) Strength reversal in Europe’s intraplate lithosphere: transition from basin inversion to lithospheric folding. Geology 33:285–288

    Article  Google Scholar 

  • Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta 55:397–401

    Article  Google Scholar 

  • Crouch EAC, Webster RK (1963) Choice of the optimum quantity and constitution of the tracer used for isotopic dilution analysis. J Chem Soc 18:118–131

    Article  Google Scholar 

  • Csontos L, Nagymarosy A, Horvath F, Kovac M (1992) Tertiary evolution of the intra-Carpathian area—a model. Tectonophysics 208:221–241

    Article  Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56

    Article  Google Scholar 

  • Dabovski C, Harkovska A, Kamenov B, Mavrudchiev B, Stanisheva-Vassileva G, Yanev Y (1991) A geodynamic model of the Alpine magmatism in Bulgaria. Geol Balc 21:3–15

    Google Scholar 

  • de Boorder H, Spakman W, White SH, Wortel MJR (1998) Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth Planet Sci Lett 164:569–575

    Article  Google Scholar 

  • Dupont A, Auwera J, Pin C, Marincea Ş, Berza T (2002) Trace element and isotope (Sr, Nd) geochemistry of porphyry- and skarn-mineralizing Late Cretaceous intrusions from Banat, Western South Carpathains, Romania. Miner Depos 37:568–586

    Article  Google Scholar 

  • Fanger L, Driesner T, Heinrich CA, von Quadt A, Peycheva I (2001) Elatsite porphyry Cu deposit, Bulgaria: mineralisation, alteration, and structures. In: Mineral deposits at the beginning of the 21st century, Proceedings of the sixth Biennial SGA Meeting 6:527–529

  • Foose R, Manheim F (1975) Geology of Bulgaria: a review. AAPG Bull 59:303–335

    Google Scholar 

  • Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381:235–273

    Article  Google Scholar 

  • Handler R, Velichkova SH, Neubauer F, Ivanov Z (2004) 40Ar/39Ar age constraints on the timing of the formation of Cu–Au deposits in the Panagyurishte region, Bulgaria. Schweiz. Mineral Petrograph Mitt (Spec. issue GEODE-ABCD) 84/1:119–132

  • Hannah JL, Stein HJ, Wieser ME, de Laeter JR, Varner M (in press) Mo isotope variations in molybdenite: Vapor transport and Rayleigh fractionation of Mo. Geology

  • Heumann H (1988) Isotope dilution mass spectrometry. In: Adams F, Gijbels R, Van Grieken R (eds) Inorganic mass spectrometry. Wiley, New York, pp 301–376

    Google Scholar 

  • Heinrich C, Neubauer F (2002) Cu-Au-Pb-Zn-Ag metallogeny of the Alpine–Balkan–Carpathian–Dinaride geodynamic province. Miner Depos 37:533–540

    Article  Google Scholar 

  • Hsü K, Nachev I, Vuchev V (1977) Geologic evolution of Bulgaria in light of plate tectonics. Tectonophysics 40:245–256

    Article  Google Scholar 

  • Iancu V, Berza T, Seghedi A, Gheuca I, Hann HP (2005) Alpine polyphase tectono-metamorphic evolution of the South Carpathians: a new overview. Tectonophysics 410:337–365

    Article  Google Scholar 

  • Janković S (1997) The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian Metallogenic Belt. Miner Depos 32:426–433

    Article  Google Scholar 

  • Janković S, Jelenković R (1997) Correlation between the Oraviţa-Krepoljin and the Bor-Srednjegorie metallogenic zones. Rom J Miner Depos 78:57–70

    Google Scholar 

  • Janković S, Jovanović M, Karamata S, Lovrić A (1981) Isotopic age of some rocks from the Timok eruptive area. Academy of Serbian Science and Arts, Natural Science and Mathematics 48:87–94

    Google Scholar 

  • Janković S, Herrington RJ, Koželj D (1998) The Bor and Majdanpek copper–gold deposits in the context of the Bor metallogenic zone (Serbia, Yugoslavia). In: Porter TM (ed) Porphyry and hydrothermal copper & gold deposits; a global perspective; conference proceedings, Australian Mineral Foundation, Glenside, Australia, 169–178

  • Janković S, Jelenković R, Koželj D (eds) (2002) The Bor copper and gold deposit, QWERTY, Bor, 298

  • Kamenov B, Kedialkov K, Popov K, Kehayov R (2003) Petrology of the Late Cretaceous ore–magmatic centers in central Srednogorie, Bulgaria. In: Bogdanov K, Strashimirov S (eds) Cretaceous porphyry-epithermal systems of the Srednogorie Zone, Bulgaria. SEG Guidebook Series 36:7–27

  • Karamata S, Kneević V, Pécskay Z, Djordjević M (1997) Magmatism and metallogeny of the Ridanj–Krepoljin Belt (Eastern Serbia) and their correlation with northern and Eastern Analogues. Miner Depos 32:452–458

    Article  Google Scholar 

  • Karamata S, Kneević-Djordjević V, Milovanović D (2002) A review of the evolution of Upper Cretaceous–Paleogene magmatism in the Timok Magmatic Complex and the associated mineralization. In: Koželj D, Jelenković R (eds) Geology and metallogeny of the copper and gold deposits in the Bor Metallogenic Zone, QWERTY, Bor, pp 15–28

  • Kazmin V, Sbortshikov I, Ricou LE, Zonenshain L, Boulin J, Knipper A (1986) Volcanic belts as markers of the Mesozoic–Cenozoic active margin of Eurasia. Tectonophysics 123:123–152

    Article  Google Scholar 

  • Kincaid C, Griffiths RW (2003) Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425:58–62

    Article  Google Scholar 

  • Knipper A, Ricou LE, Dercourt J (1986) Ophiolites as indicators of the geodynamic evolution of the Tethyan Ocean. Tectonophysics 123:213–241

    Article  Google Scholar 

  • Kouzmanov K, Bailly L, Ramboz C, Rouer O, Beny J (2002) Mineralogy, fluid inclusion study, and Re–Os dating of Mo-bearing mineralization from the Vlaikoiv Vrah porphyry copper deposit, Panagyurishte district, Bulagria: preliminary results. J Conf Abstr 6:557

    Google Scholar 

  • Koželj D (2002) Epithermal gold mineralization in the Bor metallogenic zone. Godine, Bor, 219

  • Koželj D, Jelenković R (eds) (2002) Geology and metallogeny of copper and gold deposits in the Bor metallogenic zone—Bor 100 years. QWERTY, Bor, 208

  • Lilov P, Chipchakova S (1999) K–Ar dating of Upper Cretaceous magmatic rocks and hydrothermal metasomatic rocks from Central Sredna Gora. Geokhimiya, Mineralogiya, and Petrologiya 36:77–91

    Google Scholar 

  • Linzer HG (1996) Kinematics of retreating subduction along the Carpathian arc, Romania. Geology 24:167–170

    Article  Google Scholar 

  • Lips A (2002) Correlating magmatic–hydrothermal ore deposit formation over time with geodynamic processes in SE Europe. In: Blundell D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogen. Geological Society of London, Special Publications 204:69–79

  • Lips A, Herrington R, Stein G, Koželj D, Popov K, Wijbrans J (2004) Refined timing of porphyry copper formation in the Serbian and Bulgarian portions of the Cretaceous Carpatho–Balkan Belt. Econ Geol 99:601–609

    Article  Google Scholar 

  • Manske S, Hedenquist J, O’Connor G, Tămaş C, Bauuet B, Leary S, Minut A (2006) Roşia Montană, Romania: Europe’s largest gold deposit. SEG Newsletter 64:1–15

    Google Scholar 

  • Markey RJ, Stein HJ, Morgan JW (1998) Highly precise Re–Os age for molybdenite using alkali fusion and NTIMS. Talanta 45:935–946

    Article  Google Scholar 

  • Markey RJ, Hannah JL, Morgan JW, Stein HJ (2003) A double spike for osmium analysis of highly radiogenic samples. Chem Geol 200:395–406

    Article  Google Scholar 

  • Minkovska V, Peybernès B, Nikolov T (2002) Palaeogeography and geodynamic evolution of the Balkanides and Moesian ‘Microplate’ (Bulgaria) during the Earliest Cretaceous. Cretac Res 23:37–48

    Article  Google Scholar 

  • Neubauer F (2002) Correlating Late Cretaceous with Neogene ore provinces in the Alpine–Balkan–Carpathian–Dinaride collision belt. In: Blundell D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogen. Geological Society of London, Special Publications 204:81–102

  • Neubauer F, Lips A, Kouzmanov K, Lexa J, Ivaşcanu P (2005) 1: Subduction, slab detachment and mineralization: The Neogene in the Apuseni Mountains and Carpathians. Ore Geol Rev 27:13–44

    Article  Google Scholar 

  • Neugebauer J, Breiner B, Appel E (2001) Kinematics of the Alpine–West Carpathian orogen and palaeogeographic implications. J Geol Soc (Lond) 158:97–110

    Google Scholar 

  • Nicolae I, Soroiu M, Bonhomme GM (1992) Ages K–Ar de quelques ophiolites des Monts Apuseni du sud (Roumanie) et leur signification géologique. Géologie Alpine 68:77–83

    Google Scholar 

  • Nicolescu Ş, Cornell D, Bojar AV (1999) Age and tectonic setting of Boşca and Ocna de Fier-Dognecea granodiorites (Southwest Romania) and of associated skarn mineralization. Miner Depos 34:743–753

    Article  Google Scholar 

  • Nielsen SB, Thomsen E, Hansen DL, Clausen O (2005) Plate-wide stress relaxation explains European Paleocene basin inversions. Nature 435:195–198

    Article  Google Scholar 

  • Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys Rev 77:789–793

    Article  Google Scholar 

  • Pătraşcu S, Bleahu M, Panaiotu C (1990) Tectonic implications of paleomagnetic research into Upper Cretaceous magmatic rocks in the Apuseni Mountains, Romania. Tectonophysics 180:309–322

    Article  Google Scholar 

  • Pătraşcu S, Bleahu M, Panaiotu C, Panaiotu CE (1992) The paleomagnetism of Upper Cretaceous magmatic rocks in the Banat area of South Carpathians: tectonic implications. Tectonophysics 213:341–352

    Article  Google Scholar 

  • Pătraşcu S, Şeclăman M, Panaiotu C (1993) Tectonic implications of paleomagnetism in Upper Cretaceous deposits in the Haţeg and Ruscă Montana Basins (South Carpathians, Romania). Cretac Res 14:255–264

    Article  Google Scholar 

  • Pătraşcu S, Panaiotu C, Şeclăman M, Panaiotu CE (1994) Timing of rotational motion of Apuseni Mountains (Romania): paleomagnetic data from Tertiary magmatic rocks. Tectonophysics 233:163–176

    Article  Google Scholar 

  • Popov P (1987) Tectonics of the Banat-Srednogorie Rift. Tectonophysics 14:209–216

    Article  Google Scholar 

  • Popov P, Strashimirov S, Popov K (2003) Geology and metallogeny of the Srednogorie Zone and Panagyurishte ore region. In: Bogdanov K, Strashimirov S (eds) Cretaceous porphyry–epithermal systems of the Srednogorie Zone, Bulgaria. SEG Guidebook Series 36:7–27

  • Rădulescu D, Săndulescu M (1973) The plate-tectonics concept and the geologic structure of the Carpathians. Tectonophysics 16:155–161

    Article  Google Scholar 

  • Ricou LE, Dercourt J, Geyssant J, Grandjacquet C, Lepvrier C, Biju-Duval B (1986) Geological constraints on the Alpine evolution of the Mediterranean Tethys. Tectonophysics 123:83–122

    Article  Google Scholar 

  • Ricou LE, Burg JP, Godfriaux I, Ivanov Z (1998) Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodin Acta 11:285–309

    Article  Google Scholar 

  • Ricou LE, Burg JP, Godfriaux I, Ivanov Z (2000) Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe—reply to Ivan Zagorchev’s comment “Rhodope facts and tethys self-delusions”. Geodin Acta 13:61–63

    Article  Google Scholar 

  • Rosu E, Seghedi I, Downes H, Alderton DHM, Szakacs A, Pecskay Z, Panaiotu C, Panaiotu CE, Nedelcu L (2004) Extension-related Miocene calc-alkaline magmatism in the Apuseni Mountains, Romania; Origin of magmas. Schweizerische Mineralogische und Petrographische Mitteilungen 84:153–172

    Google Scholar 

  • Royden LH (1993) Evolution of retreating subduction boundaries formed during continental collisions. Tectonics 12:629–639

    Google Scholar 

  • Schmid S, Berza T, Diaconescu V, Froitzheim N, Fügenschuh B (1998) Orogen-parallel extension in the South Carpathians. Tectonophysics 297:209–228

    Article  Google Scholar 

  • Selverstone J (2005) Are the alps collapsing? Annu Rev Earth Planet Sci 33:113–132

    Article  Google Scholar 

  • Shanov S, Spassov E, Georgiev T (1992) Evidence for the existence of a paleosubduction zone beneath the Rhodopean Massif (Central Balkans). Tectonophysics 206:307–314

    Article  Google Scholar 

  • Shirey SB, Walker RJ (1995) Carius tube digestion for low-blank rhenium–osmium analysis. Anal Chem 34:2136–2141

    Article  Google Scholar 

  • Smoliar M, Walker R, Morgan J, Du A, Sun Y (1996) Re–Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science 271:1099–1102

    Article  Google Scholar 

  • Stampfli G, Marcoux J, Baud A (1991) Tethyan margins in space and time. Palaeogeogr Palaeoclimatol Palaeoecol 87:373–409

    Article  Google Scholar 

  • Stein HJ (2006) Low-rhenium molybdenite by metamorphism in northern Sweden: recognition, genesis, and global implications. Lithos 87:300–327

    Article  Google Scholar 

  • Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherstén A (2001) The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nova 13:479–486

    Article  Google Scholar 

  • Stein HJ, Scherstén A, Hannah JH, Markey RJ (2003) Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochim Cosmochim Acta 67:3673–3686

    Article  Google Scholar 

  • Stein HJ, Hannah JL, Zimmerman A, Markey RJ, Sarkar SC, Pal AB (2004) A 2.5 Ga porphyry Cu–Mo–Au deposit at Malanjkhand, central India: implications for Late Archean continental assembly. Precambrian Res 134:189–226

    Article  Google Scholar 

  • Stoykov S, Peytcheva I, von Quadt A, Moritz R, Frank M, Fontignie D (2004) Timing and magma evolution of the Chelopech volcanic complex (Bulgaria). Swiss Bull of Mineralogy and Petrology 84:101–117

    Google Scholar 

  • Strashimirov S, Petrunov R, Kanazirski M (2002) Porphyry–copper mineralization in the central Srednogorie Zone, Bulgaria. Miner Depos 37:587–598

    Article  Google Scholar 

  • Tarkian M, Hünken U, Tokmakchieva M, Bogdanov K (2003) Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria. Miner Depos 38:261–281

    Google Scholar 

  • Vlad SN (1997) Calcic skarns and transversal zoning in the Banat Mountains, Romania: indicators of an Andean-type setting. Miner Depos 32:446–451

    Article  Google Scholar 

  • Völkening J, Walczyk T, Heumann K (1991) Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 105:147–159

    Article  Google Scholar 

  • von Raumer J, Stampfli G, Bussy F (2003) Gondwana-derived microcontinents: the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22

    Article  Google Scholar 

  • von Quadt A, Ivanov Z, Peycheva I (2001) The Central Srednogorie (Bulgaria) part of the Cu (Au–Mo) Belt of Europe; a review of the geochronological data and the geodynamical models in the light of the new structural and isotopic studies. In: Mineral deposits at the beginning of the 21st century, Proceedings of the sixth Biennial SGA Meeting 6:555–558

  • von Quadt A, Peytcheva I, Heinrich CA (2002a) Life span of a Cu–(Au–PGE) porphyry deposit using high-precise U–Pb single zircon dating: example, Elatsite, Bulgaria. Geochim Cosmochim Acta 66:811

    Google Scholar 

  • von Quadt A, Peytcheva I, Kamenov B, Fanger L, Heinrich CA, Frank M (2002b) The Elatsite porphyry copper deposit in the Panagyurishte Ore District, Srednogorie Zone, Bulgaria: U–Pb zircon geochronology and isotope-geochemical investigations of magmatism and ore genesis. In: Blundell D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogen. Geological Society of London, Special Publications 204:119–136

  • von Quadt A, Driesner T, Heinrich C (2004) Geodynamics and ore deposit evolution of the Alpine–Carpathian–Balkan–Dinaride orogenic system. Schweizerische Mineralogische und Petrographische Mitteilungen 84:1–2

    Google Scholar 

  • von Quadt A, Moritz R, Peycheva I, Heinrich CA (2005) 3: Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Panagyurishte Region of the Apuseni–Banat–Timok–Srednogorie Belt, Bulgaria. Ore Geol Rev 27:95–126

    Article  Google Scholar 

  • Wang B, Chen H, Yang S, Xiao A, Cheng C, Rupp J (2005) Geometry and kinematics of Late Cretaceous inversion structures in the Jiuquan Basin, western China. Cretac Res 26:319–327

    Article  Google Scholar 

  • Willingshofer E, Neubauer F, Cloetingh S (1999) The significance of Gosau-type basins for the Late Cretaceous history of the Alpine-Carpathian Belt. Phys Chem Earth 24:687–695

    Article  Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290:1910–1917

    Article  Google Scholar 

  • Zagorchev I (1998) Rhodope controversies. Episodes 21:159–166

    Google Scholar 

  • Zagorchev I (2000) Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe—comment: Rhodope facts and tethys self-delusions. Geodin Acta 13:55–59

    Article  Google Scholar 

  • Zimmerman A (2006) Tectonic configuration of the Apuseni–Banat–Timok–Srednogorie Belt, Southeastern Europe, constrained by high precision Re–Os molybdenite ages. M.S. Thesis, Colorado State University, 91

  • Zimmerman A, Stein H, Markey R, Fanger L, Heinrich C, von Quadt A, Peytcheva I (2003) Re–Os ages for the Elatsite Cu–Au deposit, Srednogorie zone, Bulgaria. In: Eliopoulos et al (eds) Mineral Exploration and Sustainable Development. Proceedings of the seventh Biennial SGA meeting 7:1253–1256

  • Zimmerman A, Stein H, Hannah J (2005) Tethyan metallogenesis: Re–Os geochronology of the Panagyurishte district, Bulgaria. Geological Society of America Abstracts with Programs 37:97

    Google Scholar 

  • Zonenshain L, Le Pichon X (1986) Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics 123:181–212

    Article  Google Scholar 

Download references

Acknowledgments

This paper constitutes the M.S. thesis work of the first author under the AIRIE Program at Colorado State University. Student research grants from the Society of Economic Geologists (SEG Foundation), the Geological Society of America, and Geosciences-CSU are gratefully acknowledged. The thesis and the opportunity to visit the ABTS belt to collect molybdenite samples in field context were also funded in part by a US National Science Foundation grant (EAR-0087483) to Stein. The project was enhanced by supplementary samples along with logistical and intellectual support from Serban Vlad, Christiana Ciobanu, Nigel Cook, Lorenz Fanger, Kalin Kouzmanov, Albrecht von Quadt, Christoph Heinrich, Persa Žiković, and personnel from visited mines. A constructive review from Franz Neubauer improved the manuscript. Editorial support from Bernd Lehmann is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Zimmerman.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerman, A., Stein, H.J., Hannah, J.L. et al. Tectonic configuration of the Apuseni–Banat—Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re–Os molybdenite ages. Miner Deposita 43, 1–21 (2008). https://doi.org/10.1007/s00126-007-0149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-007-0149-z

Keywords

Navigation