Skip to main content
Log in

Umbilical Cord Stromal Cells (UCSC)

Zellen mit osteogenem Differenzierungspotenzial

Umbilical cord stromal cells (UCSC)

Cells featuring osteogenic differentiation potential

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Voraussetzung zur Etablierung zelltherapeutischer Verfahren in der regenerativen Medizin ist die Identifizierung geeigneter Zellsysteme, die 1. in ausreichenden Mengen zur Verfügung stehen, 2. leicht zu gewinnen sind, 3. sich in vitro gut expandieren lassen und 4. dem notwendigen Zelltyp entsprechen bzw. sich in diesen differenzieren lassen. Da die Nabelschnur ohne jegliche Intervention vorliegt und eine beträchtliche Menge an Gewebe darstellt, halten wir diese für eine hoffnungsvolle Quelle zur Gewinnung solcher Zellen.

In dieser Arbeit wird gezeigt, dass Umbilical Cord Stromal Cells (UCSC), die Bindegewebszellen des Nabelschnurgewebes, in ausreichenden Mengen gewonnen werden können und sich in vitro gut expandieren lassen. UCSC ähneln mit ihrer phänotypischen Plastizität funktionell den Stammzellen. UCSC können in Zellen mit osteoblastären Eigenschaften (Expression von alkalischer Phosphatase, Ausbildung von Bone nodules) differenziert werden.

Fazit: Die Nabelschnur darf nicht länger als wertloses Gewebe betrachtet und gedankenlos entsorgt werden, da sie v. a. für die Reparatur knöcherner Defekte eine wertvolle Ressource zur Gewinnung von potenten Zellen für zellbasierende Therapieansätze darstellen könnte.

Abstract

The identification of appropriate cell types is necessary to establish cell-based therapies in regenerative medicine. These cell types must (1) be available in an appropriate amount, (2) be easy to obtain, (3) be sufficiently expandable in vitro, and (4) fit to or at least be able to differentiate into the required cell type. Since the umbilical cord is available without any intervention and represents a notable amount of tissue, we consider it to be a promising source for isolating cells for cell-based therapies.

This study demonstrates that umbilical cord stromal cells (UCSC), the connective tissue cells of the umbilical cord, can be isolated in sufficient quantities and be well expanded. UCSC feature phenotypic plasticity and thus are functionally similar to stem cells. UCSC can be differentiated into cells with osteoblastic properties (expression of alkaline phosphatase, formation of bone nodules).

It is concluded that the umbilical cord should no longer be regarded as valueless tissue and be unthinkingly discarded. Instead, it should be considered a valuable resource for the isolation of potent cells for cell-based therapies, especially for treatment of bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2a–c

Literatur

  1. Burns CE, Zon LI (2002) Portrait of a stem cell. Dev Cell 3: 612–613

    Article  CAS  PubMed  Google Scholar 

  2. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9: 641–650

    CAS  PubMed  Google Scholar 

  3. Direkze NC, Forbes SJ, Brittan M et al. (2003) Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells 21: 514–520

    Article  PubMed  Google Scholar 

  4. Emura M, Ochiai A, Horino M, Arndt W, Kamino K, Hirohashi S (2000) Development of myofibroblasts from human bone marrow mesenchymal stem cells cocultured with human colon carcinoma cells and TGF beta 1. In Vitro Cell Dev Biol Anim 36: 77–80

    Article  CAS  PubMed  Google Scholar 

  5. Eyden BP, Ponting J, Davies H, Bartley C, Torgersen E (1994) Defining the myofibroblast: normal tissues, with special reference to the stromal cells of Wharton’s jelly in human umbilical cord. J Submicrosc Cytol Pathol 26: 347–355

    CAS  PubMed  Google Scholar 

  6. Forbes SJ, Poulsom R, Wright NA (2002) Hepatic and renal differentiation from blood-borne stem cells. Gene Ther 9: 625–630

    Article  CAS  PubMed  Google Scholar 

  7. Herzog EL, Chai L, Krause DS (2003) Plasticity of marrow-derived stem cells. Blood 102: 3483–3493

    Article  CAS  PubMed  Google Scholar 

  8. Huss R (2000) Isolation of primary and immortalized CD34-hematopoietic and mesenchymal stem cells from various sources. Stem Cells 18: 1–9

    Article  CAS  PubMed  Google Scholar 

  9. Kadner A, Hoerstrup SP, Tracy J et al. (2002) Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg 74: S1422–1428

    Article  PubMed  Google Scholar 

  10. La Russa VF, Schwarzenberger P, Miller A, Agrawal K, Kolls J, Weiner R (2002) Marrow stem cells, mesenchymal progenitor cells, and stromal progeny. Cancer Invest 20: 110–123

    Article  PubMed  Google Scholar 

  11. Liu Y, Rao MS (2003) Transdifferentiation—fact or artifact. J Cell Biochem 88: 29–40

    Article  CAS  PubMed  Google Scholar 

  12. Maish MS, Hoffman-Kim D, Krueger PM, Souza JM, Harper JJ 3rd, Hopkins RA (2003) Tricuspid valve biopsy: a potential source of cardiac myofibroblast cells for tissue-engineered cardiac valves. J Heart Valve Dis 12: 264–269

    PubMed  Google Scholar 

  13. Meivar-Levy I, Ferber S (2003) New organs from our own tissues: liver-to-pancreas transdifferentiation. Trends Endocrinol Metab 14: 460–466

    Article  CAS  PubMed  Google Scholar 

  14. Mitchell KE, Weiss ML, Mitchell BM et al. (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21: 50–60

    CAS  PubMed  Google Scholar 

  15. Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103: 1522–1528

    PubMed  Google Scholar 

  16. Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P (1997) Stromal differentiation and architecture of the human umbilical cord. Placenta 18: 53–64

    Article  CAS  PubMed  Google Scholar 

  17. Pauli S, Lauwers P, Van Schil P et al. (2000) Lamellar bone formation in an atherosclerotic plaque of the carotid artery, with a review of histogenesis—a case report. Angiology 51: 77–81

    CAS  PubMed  Google Scholar 

  18. Peled A, Zipori D, Abramsky O, Ovadia H, Shezen E (1991) Expression of alpha-smooth muscle actin in murine bone marrow stromal cells. Blood 78: 304–309

    CAS  PubMed  Google Scholar 

  19. Pittenger MF, Mackay AM, Beck SC et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  CAS  PubMed  Google Scholar 

  20. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95: 9–20

    Article  CAS  PubMed  Google Scholar 

  21. Poulsom R, Forbes SJ, Hodivala-Dilke K et al. (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195: 229–235

    Article  CAS  PubMed  Google Scholar 

  22. Reyes M, Verfaillie CM (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 938: 231–233; discussion 233–235

    CAS  PubMed  Google Scholar 

  23. Ringe J, Kaps C, Burmester GR, Sittinger M (2002) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89: 338–351

    Article  CAS  PubMed  Google Scholar 

  24. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21: 105–110

    Article  Google Scholar 

  25. Schnell AM, Hoerstrup SP, Zund G et al. (2001) Optimal cell source for cardiovascular tissue engineering: venous vs. aortic human myofibroblasts. Thorac Cardiovasc Surg 49: 221–225

    Article  CAS  PubMed  Google Scholar 

  26. Sitnicka E, Wang QR, Tsai S, Wolf NS (1995) Support versus inhibition of hematopoiesis by two characterized stromal cell types. Stem Cells 13: 655–665

    CAS  PubMed  Google Scholar 

  27. Slack JM, Tosh D (2001) Transdifferentiation and metaplasia—switching cell types. Curr Opin Genet Dev 11: 581–586

    Article  CAS  PubMed  Google Scholar 

  28. Steinhoff G, Stock U, Karim N et al. (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102: III50–55

    CAS  PubMed  Google Scholar 

  29. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3: 778–784

    Article  CAS  PubMed  Google Scholar 

  30. Zuk PA, Zhu M, Ashjian P et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279–4295

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Ein besonderer Dank gilt dem Team des Kreißsaals der Gynäkologie des Klinikums rechts der Isar der TU München. Ihr Engagement bei der Gewinnung der Nabelschnüre und des Nabelschnurblutes stellt eine der Stützen des Erfolgs des STEMMAT-Projektes dar.

Darüber hinaus sei allen Müttern gedankt, die durch ihre Einwilligung zur Gewinnung der Nabelschnüre einen Beitrag zur Erforschung dieses wertvollen Gewebes leisten.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eblenkamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eblenkamp, M., Aigner, J., Hintermair, J. et al. Umbilical Cord Stromal Cells (UCSC). Orthopäde 33, 1338–1345 (2004). https://doi.org/10.1007/s00132-004-0730-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-004-0730-4

Schlüsselwörter

Keywords

Navigation