Skip to main content
Log in

Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock?

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To test the hypothesis that, in resuscitated septic shock patients, central venous-to-arterial carbon dioxide difference [P(cv-a)CO2] may serve as a global index of tissue perfusion when the central venous oxygen saturation (ScvO2) goal value has already been reached.

Design

Prospective observational study.

Setting

A 22-bed intensive care unit (ICU).

Patients

After early resuscitation in the emergency unit, 50 consecutive septic shock patients with ScvO2 > 70% were included immediately after their admission into the ICU (T0). Patients were separated in Low P(cv-a)CO2 group (Low gap; n = 26) and High P(cv-a)CO2 group (High gap; n = 24) according to a threshold of 6 mmHg at T0.

Measurements

Measurements were performed every 6 h over 12 h (T0, T6, T12).

Results

At T0, there was a significant difference between Low gap patients and High gap patients for cardiac index (CI) (4.3 ± 1.6 vs. 2.7 ± 0.8 l/min/m², P < 0.0001) but not for ScvO2 values (78 ± 5 vs. 75 ± 5%, P = 0.07). From T0 to T12, the clearance of lactate was significantly larger for the Low gap group than for the High gap group (P < 0.05) as well as the decrease of SOFA score at T24 (P < 0.01). At T0, T6 and T12, CI and P(cv-a)CO2 values were inversely correlated (P < 0.0001).

Conclusion

In ICU-resuscitated patients, targeting only ScvO2 may not be sufficient to guide therapy. When the 70% ScvO2 goal-value is reached, the presence of a P(cv-a)CO2 larger than 6 mmHg might be a useful tool to identify patients who still remain inadequately resuscitated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873

    Article  PubMed  Google Scholar 

  2. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  3. Varpula M, Karlsson S, Ruokonen E, Pettila V (2006) Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med 32:1336–1343

    Article  PubMed  Google Scholar 

  4. van Beest P, Hofstra J, Schultz M, Boerma E, Spronk P, Kuiper M (2008) The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands. Crit Care 12:R33

    Google Scholar 

  5. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  PubMed  CAS  Google Scholar 

  6. Fink MP (2002) Cytopathic hypoxia. Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit Care Clin 18:165–175

    Article  PubMed  CAS  Google Scholar 

  7. Vallee F, Fourcade O, Marty P, Sanchez P, Samii K, Genestal M (2007) The hemodynamic “target”: a visual tool of goal-directed therapy for septic patients. Clinics 62:447–454

    Article  PubMed  Google Scholar 

  8. Ladakis C, Myrianthefs P, Karabinis A, Karatzas G, Dosios T, Fildissis G, Gogas J, Baltopoulos G (2001) Central venous and mixed venous oxygen saturation in critically ill patients. Respiration 68:279–285

    Article  PubMed  CAS  Google Scholar 

  9. Brandi LS, Giunta F, Pieri M, Sironi AM, Mazzanti T (1995) Venous-arterial PCO2 and pH gradients in acutely ill postsurgical patients. Minerva Anestesiol 61:345–350

    PubMed  CAS  Google Scholar 

  10. Groeneveld AB, Vermeij CG, Thijs LG (1991) Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg 73:576–582

    Article  PubMed  CAS  Google Scholar 

  11. Durkin R, Gergits MA, Reed JF 3rd, Fitzgibbons J (1993) The relationship between the arteriovenous carbon dioxide gradient and cardiac index. J Crit Care 8:217–221

    Article  PubMed  CAS  Google Scholar 

  12. Mecher CE, Rackow EC, Astiz ME, Weil MH (1990) Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 18:585–589

    Article  PubMed  CAS  Google Scholar 

  13. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ (1992) Veno-arterial carbon dioxide gradient in human septic shock. Chest 101:509–515

    Article  PubMed  CAS  Google Scholar 

  14. Rackow EC, Astiz ME, Mecher CE, Weil MH (1994) Increased venous-arterial carbon dioxide tension difference during severe sepsis in rats. Crit Care Med 22:121–125

    PubMed  CAS  Google Scholar 

  15. Vallet B, Teboul JL, Cain S, Curtis S (2000) Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89:1317–1321

    PubMed  CAS  Google Scholar 

  16. Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F (2002) Small intestine intramucosal PCO2 and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med 30:379–384

    Article  PubMed  Google Scholar 

  17. Lamia B, Monnet X, Teboul JL (2006) Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol 72:597–604

    PubMed  CAS  Google Scholar 

  18. Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, Pamukov N, Horst HM (2005) Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med 31:818–822

    Article  PubMed  Google Scholar 

  19. Vallet B, Lebuffe G (2007) How to titrate vasopressors against fluid loading in septic shock. Adv Sepsis 6:34–40

    CAS  Google Scholar 

  20. Annane D, Aegerter P, Jars-Guincestre MC, Guidet B (2003) Current epidemiology of septic shock: the CUB-Rea Network. Am J Respir Crit Care Med 168:165–172

    Article  PubMed  Google Scholar 

  21. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    Article  PubMed  CAS  Google Scholar 

  22. Adrogue HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE (1989) Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med 320:1312–1316

    PubMed  CAS  Google Scholar 

  23. Gutierrez G (2004) A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med 169:525–533

    Article  PubMed  Google Scholar 

  24. Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243

    PubMed  CAS  Google Scholar 

  25. Raza O, Schlichtig R (2000) Metabolic component of intestinal PCO2 during dysoxia. J Appl Physiol 89:2422–2429

    PubMed  CAS  Google Scholar 

  26. Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED (1995) Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med 23:545–552

    Article  PubMed  CAS  Google Scholar 

  27. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  28. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL (1991) Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 99:956–962

    Article  PubMed  CAS  Google Scholar 

  29. Teboul JL, Mercat A, Lenique F, Berton C, Richard C (1998) Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med 26:1007–1010

    Article  PubMed  CAS  Google Scholar 

  30. Groeneveld AB (1998) Interpreting the venous-arterial PCO2 difference. Crit Care Med 26:979–980

    Article  PubMed  CAS  Google Scholar 

  31. Lind L (1995) Veno-arterial carbon dioxide and pH gradients and survival in critical illness. Eur J Clin Invest 25:201–205

    Article  PubMed  CAS  Google Scholar 

  32. Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul JL (2002) Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 28:272–277

    Article  PubMed  Google Scholar 

  33. Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med 26:1793–1800

    PubMed  CAS  Google Scholar 

  34. Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J (1993) Lactate clearance and survival following injury. J Trauma 35:584–588; discussion 588–589

    Article  PubMed  CAS  Google Scholar 

  35. Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, Tomlanovich MC (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32:1637–1642

    Article  PubMed  Google Scholar 

  36. Reinhart K, Kuhn HJ, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30:1572–1578

    Article  PubMed  Google Scholar 

  37. Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V (2005) Hemodynamic variables related to outcome in septic shock. Intensive Care Med 31:1066–1071

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Vallée.

Electronic supplementary material

Below is the link to the electronic supplementary material.

134_2008_1199_MOESM1_ESM.doc

ESM Figure 1: Correlation between CI and P(cv-a)CO2 at each time. T0: r = 0.57, p<0.0001; T6: r = 0.58, p<0.0001 and T12 : r = 0.58, p<0.0001 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallée, F., Vallet, B., Mathe, O. et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock?. Intensive Care Med 34, 2218–2225 (2008). https://doi.org/10.1007/s00134-008-1199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1199-0

Keywords

Navigation