Skip to main content
Log in

On the value of the Kullback–Leibler divergence for cost-effective spectral imaging of plants by optimal selection of wavebands

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The practical value of a criterion based on statistical information theory is demonstrated for the selection of optimal wavelength and bandwidth of low-cost lighting systems in plant imaging applications. Kullback–Leibler divergence is applied to the problem of spectral band reduction from hyperspectral imaging. The results are illustrated on various plant imaging problems and show similar results to the one obtained with state-of-the-art criteria. A specific interest of the proposed approach is to offer the possibility to integrate technological constraints in the optimization of the spectral bands selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thenkabail, P.S., Lyon, J.G.: Huete: Hyperspectral Remote Sensing of Vegetation. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  2. Bock, C.H., Poole, G.H., Parker, P.E., Gottwald, T.: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 29, 59–107 (2010)

    Article  Google Scholar 

  3. Grahn, H., Geladi, P.: Techniques and Applications of Hyperspectral Image Analysis. Wiley, New York (2007)

    Book  Google Scholar 

  4. Vigneau, N., Ecarnot, M., Rabatel, G., Roumet, P.: Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. Field Crops Res. 122, 25–31 (2011)

    Article  Google Scholar 

  5. Behmann, J., Mahlein, A.K., Paulus, S., Kuhlmann, H., Oerke, E. C., Plumer, L.: Generation and application of hyperspectral 3D plant models. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) Computer Vision-ECCV 2014 Workshops. 70, 117–130. Springer, New York (2014)

  6. Rousseau, D., Chéné, Y., Belin, E., Semaan, G., Trigui, G., Boudehri, K., Franconi, F., Chapeau-Blondeau, F.: Multiscale imaging of plants: current approaches and challenges. Plant Methods 11, 1–6 (2015)

    Article  Google Scholar 

  7. Tsaftaris, S.A.: Noutsos: plant phenotyping with low cost digital cameras and image analytics. In: Athanasiadis, I.N., Rizzoli, A.E., Mitkas, P.A., Gómez, M.J. (eds.) Information Technologies in Environmental Engineering, pp. 238–251. Springer, Berlin (2009)

    Chapter  Google Scholar 

  8. Kleynen, O., Leemans, V., Destain, M.-F.: Selection of the most efficient wavelength bands for Jonagold apple sorting. Postharvest Biol. Technol. 30, 221–232 (2003)

    Article  Google Scholar 

  9. Piron, A., Leemans, V., Kleynen, O., Lebeau, F., Destain, M.-F.: Selection of the most efficient wavelength bands for discriminating weeds from crop. Comput. Electron. Agric. 62, 141–148 (2008)

    Article  Google Scholar 

  10. Feyaerts, F., Van Gool, K.: Multi-spectral vision system for weed detection. Pattern Recognit. Lett. 22, 667–674 (2001)

    Article  MATH  Google Scholar 

  11. Chao, K., Chen, Y., Hruschka, W., Park, B.: Chicken heart disease characterization by multi-spectral imaging. Appl. Eng. Agric. 17, 99–106 (2001)

    Article  Google Scholar 

  12. Pal, M.: Margin-based feature selection for hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 11, 212–220 (2009)

    Article  Google Scholar 

  13. Pal, M.: Multinomial logistic regression-based feature selection for hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 14, 214–220 (2012)

    Article  Google Scholar 

  14. Guo, G., Gunn, S., Damper, R., Nelson, J.: Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 3, 522–526 (2000)

    Article  Google Scholar 

  15. De Backer, S., Kempeneers, P., Debruyn, W., Scheunders, P.: A band selection technique for spectral classification. IEEE Geosci. Remote Sens. Lett. 2, 319–323 (2005)

    Article  Google Scholar 

  16. Nakauchi, S., Nishino, K., Yamashita, T.: Selection of optimal combinations of band-pass filters for ice detection by hyperspectral imaging. Opt. Express 20, 986–1000 (2012)

    Article  Google Scholar 

  17. Richter, M., Beyerer, J.: Optical filter selection for automatic visual inspection. In: IEEE Winter Conference on Applications of Computer Vision (WACV) 5, 123–128 (2014)

  18. Hansen, P.M., Schjoerring, J.K.: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86, 542–553 (2003)

    Article  Google Scholar 

  19. Thenkabail, P.S., Smith, R.B., De Pauw, E.: Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogr. Eng. Remote Sens. 68, 607–622 (2002)

    Google Scholar 

  20. Fiorani, F., Rascher, U., Jahnke, S., Schurr, U.: Imaging plants dynamics in heterogenic environments. Curr. Opin. Biotechnol. 23, 227–235 (2012)

    Article  Google Scholar 

  21. Wold, S., Ruhe, A., Wold, H., Dunn, I.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5, 735–743 (1984)

    Article  MATH  Google Scholar 

  22. Osborne, S., Kunnemeyer, R., Jordan, R.: Method of wavelength selection for partial least squares. Analyst 122, 1531–1537 (1997)

    Article  Google Scholar 

  23. Benoit, L., Belin, E., Rousseau, D., Chapeau-Blondeau, F.: Information-theoretic modeling of trichromacy coding of light spectrum. Fluct. Noise Lett. 13, 1–23 (2014)

    Article  Google Scholar 

  24. Basseville, M.: Divergence measures for statistical data processing: an annotated bibliography. Signal Process. 93, 621–633 (2013)

    Article  Google Scholar 

  25. Bowen, J.K., Mesarich, C.H., Bus, V.G., Beresford, R.M., Plummer, K.M.: Templeton: \({Venturia\, inaequalis}\): the causal agent of apple scab. Mol. Plant Pathol. 12, 105–122 (2011)

    Article  Google Scholar 

  26. Oerke, E.C., Frohling, P., Steiner, U.: Thermographic assessment of scab disease on apple leaves. Precis. Agric. 12, 699–715 (2011)

    Article  Google Scholar 

  27. Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., Belin, E., Chapeau-Blondeau, F.: On the use of depth camera for 3D phenotyping of entire plants. Comput. Electron. Agric. 82, 122–127 (2012)

    Article  Google Scholar 

  28. Belin, E., Rousseau, D., Boureau, T., Caffier, V.: Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab. Comput. Electron. Agric. 90, 159–163 (2013)

    Article  Google Scholar 

  29. Delalieux, S., Auwerkerken, A., Verstraeten, W.W., Somers, B., Valcke, R., Lhermitte, S., Coppin, P.: Hyperspectral reflectance and fluorescence imaging to detect scab induced stress in apple leaves. Remote Sens. 1, 858–874 (2009)

    Article  Google Scholar 

  30. Mahesh, S., Manickavasagan, A., Jayas, D.S., Paliwal, J., White, N.D.G.: Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst. Eng. 101, 50–57 (2008)

    Article  Google Scholar 

  31. Mahesh, S., Jayas, D.S., Paliwal, J., White, N.D.G.: Identification of wheat classes at different moisture levels using near-infrared hyperspectral images of bulk samples. Sen. Instrum. Food Qual. Saf. 5, 1–9 (2011)

    Article  Google Scholar 

  32. Manickavasagan, A., Jayas, D.S., White, N.D.G., Paliwal, J.: Wheat class identification using thermal imaging. Food Bioprocess Technol. 3, 450–460 (2010)

    Article  Google Scholar 

  33. Forcella, F., Arnold, R.L.B., Sanchez, R., Ghersa, C.M.: Modeling seedling emergence. Field Crops Res. 67, 123–139 (2000)

    Article  Google Scholar 

  34. Belin, E., Rousseau, D., Rojas-Varela, J., Demilly, D., Wagner, M.H., Cathala, M.H., Durr, C.: Thermography as non invasive functional imaging for monitoring seedling growth. Comput. Electron. Agric. 70, 236–240 (2011)

    Article  Google Scholar 

  35. Benoit, L., Belin, E., Durr, C., Chapeau-Blondeau, F., Demilly, D., Ducournau, S., Rousseau, D.: Computer vision under inactinic light for hypocotyl radicle separation with a generic gravitropism-based criterion. Comput. Electron. Agric. 111, 12–17 (2015)

    Article  Google Scholar 

  36. Murakami, Y., Obi, T., Yamaguchi, M., Ohyama, N., Komiya, Y.: Spectral reflectance estimation from multi-band image using color chart. Opt. Commun. 188, 47–54 (2001)

    Article  Google Scholar 

  37. Hernández-Andrés, J., Nieves, J.I., Valero, E.M., Romero, J.: Spectral-daylight recovery by use of only a few sensors. J. Opt. Soc. Am. A 21, 13–23 (2004)

    Article  Google Scholar 

  38. Cheung, V., Westland, S., Li, C., Hardeberg, J., Connah, D.: Characterization of trichromatic color cameras by using a new multispectral imaging technique. J. Opt. Soc. Am. A 22, 1231–1240 (2005)

    Article  Google Scholar 

  39. http://www.cie.co.at/

  40. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 23–27 (1975)

    Google Scholar 

  41. Piron, A., Leemans, V., Kleynen, O., Lebeau, F., Destain, M.-F.: Selection of the most efficient wavelength bands for discriminating weeds from crop. Comput. Electron. Agric. 2, 141–148 (2008)

    Article  Google Scholar 

  42. http://opticleaf.ipgp.fr/

Download references

Acknowledgments

This work received support from the French Government supervised by the Agence Nationale de la Recherche in the framework of the program Investissements d’Avenir under reference ANR-11-BTBR-0007 (AKER program). Landry BENOIT gratefully acknowledges financial support from Angers Loire Metropole and GEVES-SNES for the preparation of his PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rousseau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benoit, L., Benoit, R., Belin, É. et al. On the value of the Kullback–Leibler divergence for cost-effective spectral imaging of plants by optimal selection of wavebands. Machine Vision and Applications 27, 625–635 (2016). https://doi.org/10.1007/s00138-015-0717-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-015-0717-7

Keywords

Navigation