Skip to main content

Advertisement

Log in

Topology optimization design of crushed 2D-frames for desired energy absorption history

  • Research paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The present work deals with topology optimization for obtaining a desired energy absorption history of a crushed structure. The optimized energy absorbing structures are used to improve the crashworthiness of transportation vehicles. The ground structure consists of rectangular 2D-beam elements with plastic hinges. The elements can undergo large rotations, so the analysis accommodates geometric nonlinearities. A quasi-static nonlinear finite element solution is obtained with an implicit backward Euler algorithm, and the analytical sensitivities are computed by the direct differentiation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, J.A.C.; Pereira. M.S. 1997: Multibody dynamic tools for crashworthiness and impact. In: Ambrosio, J.A.C.; Seabra Pereira, M.F.O.; Pina da Silva, F. (eds.) Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection. Dordrecht: Kluwer Academic Publishers

  2. Bendsøe, M.P. 1995.: Optimization of Structural Topology, Shape and Material. Berlin, Heidelberg, New York: Springer-Verlag

  3. Bendsøe, M.P.; Guedes, J.M.; Plaxton, S.; Taylor, J.E. 1995: Optimization of structure and material properties for solids composed of softening material. Int. J. Solids Struct. 33, 1799–1813

    Google Scholar 

  4. Bruns, T.; Tortorelli, D.A. 2001: Topology optimization of nonlinear elastic structures and compliant mechanisms. Comp. Methods Appl. Mech. Eng. 190, 3443–3458

    Google Scholar 

  5. Bruns, T.; Tortorelli, D.A. 2003: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int. J. Numer. Methods Eng. 57, 1413–1430

    Google Scholar 

  6. Buhl, T.; Pedersen, C.B.W.; Sigmund, O. 2000: Stiffness design of geometrically non-linear structures using topology optimization. Struct. Multidisc. Optim. 19, 93–104

    Google Scholar 

  7. Chen, S. 2001: An approach for impact structure optimization using the robust genetic algorithm. Finite Elem. Anal. Des. 37, 431–446

    Google Scholar 

  8. Cho, S.; Choi, K.K. 2000a: Design sensitivity analysis and optimization of non-linear transient dynamics. part i – sizing design. Int. J. Numer. Methods Eng. 48, 351–373

  9. Cho, S.; Choi, K.K. 2000b: Design sensitivity analysis and optimization of non-linear transient dynamics. part ii – configuration design. Int. J. Numer. Methods Eng. 48, 375–399

  10. Diaz, A.R.; Ignatovich, C.L.; Soto, C.A. 2000: Strategies in design for enhanced crashworthiness. In: Rozvany, G.I.N.; Olhoff, N. (eds.) NATO/ISSMO ARW on Topology Optimization of Structures and Composite Continua (held in Budapest, Hungary), Dordrecht: Kluwer Academic Publishers

  11. Diaz A.R.; Soto C.A. 1999: Lattice models for crash resistant design and optimization. In: Proc. 3rd WCSMO (New York Univ. Buffalo), pp. 233–235

  12. Ebisugi, T.; Fujita, H.; Watanabe, G. 1998: Study of optimal structure design method for dynamic nonlinear problem. JSAE Rev. 19, 251–255

    Google Scholar 

  13. Esche, S.K.; Kinzel, G.L.; Altan, T. 1997: Issues in convergence improvement for non-linear finite element programs. Int. J. Numer. Methods Eng. 40, 4577–4594

    Google Scholar 

  14. Gebbeken, N. 1998: A refined numerical approach for the ultimate-load analysis of 3-d steel rod structures. Eng. Comput. 15, 312–344

    Google Scholar 

  15. Hajela, P.; Lee, E. 1997: Topological optimization of rotorcraft subfloor structures for crashworthiness considerations. Comput. Struct. 64, 65–76

    Google Scholar 

  16. Heung-Soo, K.; Wierzbicki, T. 2001: Crush behavior of thin-walled prismatic columns under combined bending and compression. Comput. Struct. 79, 1417–1432

    Google Scholar 

  17. Heyman, J. 1975: Overcomplete mechanisms of plastic collapse. J. Optim. Theory Appl. 15, 27–35

    Google Scholar 

  18. Jones, N. 1989: Structural Impact. Cambridge: Cambridge University Press

  19. Kecman, D. 1997: An engineering approach to crashworthiness of thin-walled beams and joints in vehicle structures. Thin-Walled Struct. 28, 309–320

    Google Scholar 

  20. Kleiber, M.; Antúnez, H.; Hien, T.D.; Kowalczyk, P. 1997: Parameter Sensitivity in Nonlinear Mechanics, Theory and Finite Element Computations. Chichester: John Wiley and Sons

  21. Krenk, S.; Vissing-Jørgensen, C.; Thesbjerg, L. 1999: Efficient collapse techniques for framed structures. Comput. Struct. 72, 481–496

    Google Scholar 

  22. Marklund, P.O.; Nilsson, L. 2001: Optimization of a car body component subjected to side impact. Struct. Multidisc. Optim. 21, 383–392

    Google Scholar 

  23. Maute, K.; Schwarz, S.; Ramm, E. 1998: Adaptive topology optimization of elastoplastic structures. Struct. Optim. 15, 81–91

    Google Scholar 

  24. Mayer, R.R.; Kikuchi, N.; Scott, R.A. 1996: Application of topological optimization techniques to structural crashworthiness. Int. J. Numer. Methods Eng. 39, 1383–1403

    Google Scholar 

  25. Michaleris, P.; Tortorelli, D.A.; Vidal, C.A. 1994: Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int. J. Numer. Methods Eng. 37, 2471–2499

    Google Scholar 

  26. Missoum, S.; Gürdal, Z.; Gu, W. 2002: Optimization of nonlinear trusses using a displacement-based approach. Struct. Multidisc. Optim. 23, 214–221

    Google Scholar 

  27. Montag, U.; Krätzig, W.B.; Soric, J. 1999: Increasing solution stability for finite-element modeling of elasto-plastic shell response. Adv. Eng. Software 30, 607–619

    Google Scholar 

  28. Olhoff, N. 1989: Multicriterion structural optimization via bound formulation and mathematical programming. Struct. Optim. 1, 11–17

    Google Scholar 

  29. Oran, C. 1973: Tangent stiffness in plane frames. J. Struct. Div., ASCE 99, 973–985

    Google Scholar 

  30. Pedersen, C.B.W. 2001: Topology optimization of 2D-frames for crashworthiness. In: Proc. 4rd WCSMO (held in Dalian, China)

  31. Pedersen, C.B.W. 2002a: On Topology Design of Frame Structures for Crashworthiness. PhD thesis, Dept. Mech. Eng., Solid Mech., Tech. Univ. Denmark

  32. Pedersen, C.B.W. 2002b: Topology optimization of energy absorbing frames. In: Proc. WCCM V – 5th World Congress on Computational Mechanics (held in Vienna, Austria)

  33. Pedersen, C.B.W. 2003a: Topology optimization for crashworthiness of frame structures. Int. J. Crashworthiness 8, 29–39

  34. Pedersen, C.B.W. 2003b: Topology optimization of 2D-frame structures with path dependent response. Int. J. Numer. Methods Eng. 57, 1471–1501

  35. Pedersen, C.B.W.; Buhl, T.; Sigmund, O. 2001: Topology synthesis of large-displacement compliant mechanisms. Int. J. Numer. Methods Eng. 50, 2683–2706

    Google Scholar 

  36. Pereira, M.S.; Ambrosio, J.A.C.; Dias, J.P. 1997: Crashworthiness analysis and design using rigid-flexible multibody dynamics with application to train vehicles. Int. J. Numer. Methods Eng. 40, 655–687

    Google Scholar 

  37. Perez, J.G.; Johnson, E.R.; Boitnott, R.L. 1998: Design and test of semicircular composite frames optimized for crashworthiness. Proc. AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn. Mater. Conf. 1, 27–38

  38. Saleeb, A.F.; Wilt, T.E.; Li, W. 1998: An implicit integration scheme for generalized viscoplasticity with dynamic recovery. Comput. Mech. 21, 429–440

    Google Scholar 

  39. Saleeb, A.F.; Wilt, T.E.; Li, W. 2000: Robust integration schemes for generalized viscoplasticity with internal-state variables.Comput. Struct. 74, 601–628

    Google Scholar 

  40. Saxena, A.; Ananthasuresh, G.K. 2001: Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications. J. Mech. Des. 123, 33–42

    Google Scholar 

  41. Schwarz, S.; Maute, K.; Ramm, E. 2001a: Sensitivity analysis and optimization for non-linear structural response. Eng. Comput. 18, 610–641

  42. Schwarz, S.; Maute, K.; Ramm, E. 2001b: Topology and shape optimization for elastoplastic structural response. Comput. Methods Appl. Mech. Eng. 190, 2135–2155

  43. Soric, J.; Montag, U.; Krätzig, W.B. 1997: On the increase of computational algorithm efficiency for elasto-plastic shell analysis. Eng. Comput. 14, 75–97

    Google Scholar 

  44. Soto, C.A. 2001a: Optimal structural topology design for energy absorption: A heuristic approach. In: Proc. ASME Des. Eng. Tech. Conf. (held in Pittsburgh, USA)

  45. Soto, C.A. 2001b: Structural topology optimization: From minimizing compliance to maximizing energy absorption. Int. J. Vehicle Des. 25, 142–163

  46. Stander, N.; Roux, W.; Pattabiraman, S.; Dhulipudi, R. 1999: Response surface approximations for design optimization problems in nonlinear dynamics. ASME, Pressure Vessels and Piping Div. 396, 275–284

  47. Svanberg, K. 1987: The method of moving asymptotes – a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373

    Google Scholar 

  48. Svanberg, K. 1998: The method of moving asymptotes – modelling aspects and solutions schemes. In: Bendsøe, M.P; and Pedersen, P. (eds.) Adv. Topics in Struct. Optim. DCAMM Report No. S 81, Techn. Univ. Denmark

  49. Ueda, Y.; Fujikubo, M. 1992: Plastic node method considering strain-hardening effects. Comput. Methods Appl. Mech. Eng. 94, 317–337

    Google Scholar 

  50. Yamazaki, K.; Han, J. 1998: Maximization of the crushing energy absorption of tubes. Struct. Optim. 16, 37–46

    Google Scholar 

  51. Yang, R.; Akkerman, A.; Anderson, D.F.; Faruque, O.M.; Lei, G. 2000: Robustness optimization for vehicular crash simulations. Comput. Sci. Eng. 2, 8–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.B.W. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, C. Topology optimization design of crushed 2D-frames for desired energy absorption history. Struct Multidisc Optim 25, 368–382 (2003). https://doi.org/10.1007/s00158-003-0282-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-003-0282-y

Keywords

Navigation