Skip to main content
Log in

Robust shape optimization of notches for fatigue-life extension

  • Industrial applications
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

An iterative 2D finite-element-based optimization procedure has been developed which incorporates robust design philosophies. This has been used to determine precise free-form shapes for a hole in a plate example, with the aim of maximizing its fatigue-life when exposed to varying load orientations. Past methods have typically considered only a single nominal load orientation, with empirical approaches to deal with the orientation variability, thus resulting in suboptimal solutions. Here a robust stress method is developed that produces a notch shape that minimizes the peak stress and renders it constant for a range of load orientations. Furthermore, a more sophisticated robust fatigue-damage optimization method is then developed to minimize the peak fatigue damage for a given stochastic distribution of load orientations. Fatigue calculations for an example problem with significant load orientation variation show that the robust optimization methods provide fatigue-life extensions 2 to 8 times better than past methods. It is anticipated that the implementation of robust optimal shapes in metallic components would result in greater fatigue-life extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baud, R.V. 1934: Fillet profiles for constant stress. Prod Eng (April), 133–134

  2. Burchill, M.; Heller, M. 2004a: Optimal notch shapes for loaded plates. J Strain Anal39(1), 99–116

  3. Burchill, M.; Heller, M. 2004b: Optimal free-form shapes for constrained holes in loaded plates. (for publication in Int J Fatigue)

  4. Chandu, S.V.L.; Grandhi, V. 1995: General purpose procedure for reliability based structural optimization under parametric uncertainties. Adv Eng Softw23, 7–14

    Google Scholar 

  5. Chaperon, P.; Jones, R.; Heller, M.; Pitt, S.; Rose, F. 2000: A methodology for structural optimisation with damage tolerance constraints. J Eng Fail Anal7, 281–300

    Google Scholar 

  6. Dhir, S.K. 1981: Optimisation in a class of hole shapes in plate structures. J Appl Mech48, 905–908

    Google Scholar 

  7. Durelli, A.J.; Rajaiah, K. 1979: Quasi-square hole with optimum shape in an infinite plate subjected to in-plane loading. Oakland University ONR Report No. 49

  8. Fanni, M.; Schnack, E.; Grunwald, J. 1994: Shape optimization of dynamically loaded machine parts. Int J Press Piping 59, 281–297

    Google Scholar 

  9. Grunwald, J.; Schnack, E. 1997: A fatigue model for shape optimization. Struct Optim14, 36–44

    Google Scholar 

  10. Heller, M.; Burchill, M.; McDonald, M.; Watters, K.C. 2001: Shape Optimisation of Critical Fuel Flow Vent Holes in the F-111 Wing Pivot Fitting. DSTO-TR-1120, Defence Science and Technology Organisation, Melbourne, Australia

  11. Herskovits, J.; Dias, G.P.; Mota Soares C.M. 1996: A Full Stress Technique for Structural Optimization. Appl Math Comp Sci J Shape Optim Sci Comp 6(2), 303–319

    Google Scholar 

  12. Heywood, R.B. 1945: Photo-Elasticity and Design Problems (Part II). Aircr Eng17, 226–228

    Google Scholar 

  13. Kaye, R.; Heller, M. 1997: Structural Shape Optimization by Iterative Finite Element Solution. DSTO-RR-0105, Defence Science and Technology Organisation, Melbourne, Australia

  14. Kristensen, E.S.; Madsen, N.F. 1976: On the Optimum Shape of Fillets in Plates Subjected to Multiple In-plane Loading Cases. Int J Numer Methods Eng 10, 1007–1019

    Google Scholar 

  15. Mattheck, C.; Burkhardt, S. 1990: A new method of structural shape optimisation based on biological growth. Int J Fatigue 12(3), 185–190

    Google Scholar 

  16. McDonald, M.; Heller, M.; Goldstraw, M.; Hew, A. 2001: Robustness of the F-111 Wing Pivot Fitting Optimal Rework Shapes. DSTO-TR-1121, Defence Science and Technology Organisation, Melbourne, Australia

  17. Melchers, R.E. 2001: Optimality-criteria-based probabilistic structural design, Struct Multidisc Optim23, 34–39

    Google Scholar 

  18. Miner, M.A. 1945: Cumulative damage in fatigue. Trans ASME 67, A159–A164

    Google Scholar 

  19. Neuber, H. 1969: Der zugbeanspruchte Flachstab mit optimalem Querschnittsübergang. Forschung im Ingenieurwesen35(1), 29–30

  20. Parkinson, A.; Sorensen, C.; Pourhassan, N. 1993: A General Approach for Robust Optimal Design. J Mech Des115, 74–80

    Google Scholar 

  21. Phadke, M.S. 1989: Quality engineering using robust design, NJ: Prentice Hall

  22. Roa, S.S. 1979: Optimization Theory and Applications, NJ: John Wiley Eastern

  23. Schnack, E. 1979: An optimization procedure for stress concentrations by the finite element technique. Int J Numer Methods Eng14, 115–124

    Google Scholar 

  24. Schnack, E.; Sporl, U. 1986: A mechanical dynamic programming algorithm for structural optimisation. Int J Numer Methods Eng. 23, 1985–2004

    Google Scholar 

  25. Taguchi, G.; Elsayed, E.; Hsiang, T. 1989: Quality Engineering in Production Systems, NY: McGraw-Hill

  26. Vigdergauz, S.B; Cherkayev, A.V. 1986: A hole in a plate optimal for its biaxial tension-compression. J Appl Math Mech 50(3), 401–404 (English Translation)

    Google Scholar 

  27. Waldman, W.; Heller, M.; Chen, G. 2001: Optimal free-form fillet shapes for tension and bending. Int J Fatigue23, 509–523

    Google Scholar 

  28. Waldman, W.; Heller, M.; McDonald, M.; Chen, G. 2002: Developments in rework shape optimisation for life extension of aging airframes. 3rd Australasian Cong. Appl. Mech. World Scientific 695–702, Sydney, Australia

  29. Waldman, W.; Heller, M.; Rose L.R.F 2003: Shape optimisation of two closely spaced holes for fatigue life extension. DSTO-RR-0253, Defence Science and technology Organisation, Melbourne Australia

  30. Xie, Y.M.; Steven, G.P. 1992: Optimal design of multiple load case structures using an evolutionary procedure, Finite Element Analysis Research Centre, University of Sydney, Australia

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, M., Heller, M. Robust shape optimization of notches for fatigue-life extension. Struct Multidisc Optim 28, 55–68 (2004). https://doi.org/10.1007/s00158-004-0437-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-004-0437-5

Keywords

Navigation